2025 Volume 15 Issue 5
Article Contents

Jinqi Wang, Xijuan Chen. MAPPING PROPERTY FOR BILINEAR $\Theta$-TYPE GENERALIZED FRACTIONAL INTEGRAL OPERATOR ON GRAND VARIABLE EXPONENTS HERZ-MORREY SPACES[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2761-2785. doi: 10.11948/20240525
Citation: Jinqi Wang, Xijuan Chen. MAPPING PROPERTY FOR BILINEAR $\Theta$-TYPE GENERALIZED FRACTIONAL INTEGRAL OPERATOR ON GRAND VARIABLE EXPONENTS HERZ-MORREY SPACES[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2761-2785. doi: 10.11948/20240525

MAPPING PROPERTY FOR BILINEAR $\Theta$-TYPE GENERALIZED FRACTIONAL INTEGRAL OPERATOR ON GRAND VARIABLE EXPONENTS HERZ-MORREY SPACES

  • Author Bio: Email: wjqxjy1920@126.com(J. Wang)
  • Corresponding author: Email: chenxijuan2023@126.com(X. Chen)
  • Fund Project: The authors were supported by the Master Foundation of Northwest Normal University (Grant No. KYZZS2025115)
  • The aim of this paper is to establish the boundedness of the bilinear $ \theta $-type generalized fractional integral operators $ B\widetilde{T}_{\beta,\theta} $ and their commutators $ B\widetilde{T}_{\beta,\theta,b_1,b_2} $, generated by $ b_1,b_2\in\mathrm{BMO}(\mathbb{R}^n) $ and $ B\widetilde{T}_{\beta,\theta} $, on Lebesgue spaces with variable exponent $ L^{q(\cdot)}(\mathbb{R}^{n}) $. Under the assumption that variable exponents $ \alpha(\cdot) $ and $ q_{i}(\cdot) $ for $ i=1,2 $ satisfy the $ \log $ decay at both infinity and the origin, the authors prove that the $ B\widetilde{T}_{\beta,\theta} $ and $ B\widetilde{T}_{\beta,\theta,b_1,b_2} $ are bounded on the grand variable exponents Herz spaces $ \dot{K}_{q(\cdot)}^{\alpha(\cdot),p),\theta}(\mathbb{R}^n)\big(\hbox{or}\ K_{q(\cdot)}^{\alpha(\cdot),p),\theta}(\mathbb{R}^n)\big) $ and grand variable exponents Herz-Morrey spaces $ M\dot{K}_{p),\theta,q(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^n)\big(\hbox{or}\ MK_{p),\theta,q(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^n)\big) $, respectively.

    MSC: 42B20, 42B35, 47A07, 47B47
  • 加载中
  • [1] I. Aarab and M. A. Tagmouti, Harmonic oscillator perturbed by a decreasing scalar potential, J. Pseudo-Differ. Oper. Appl., 2020, 11(1), 141–157. doi: 10.1007/s11868-019-00284-4

    CrossRef Google Scholar

    [2] E. Berezhnoi and A. Karapetyants, Grand and small norms in Lebesgue spaces, Math. Methods Appl. Sci., 2024, 47(2), 725–741. doi: 10.1002/mma.9679

    CrossRef Google Scholar

    [3] X. J. Chen, G. H. Lu and W. W. Tao, Fractional type Marcinkiewicz integral and its commutator on grand variable Herz-Morrey spaces, J. Pseudo-Differ. Oper. Appl., 2024, 15(3), 1–19.

    Google Scholar

    [4] D. Cruz-Uribe, A. Fiorenza, J. M. Martell and C. Pérez, The boundedness of classical operators on variable Lp spaces, Ann. Acad. Sci. Fenn. Math., 2006, 31(1), 239–264.

    Google Scholar

    [5] X. Fu, D. C. Yang and W. Yuan, Generalized fractional integrals and their commutators over non-homogeneous metric measure spaces, Taiwan. J. Math., 2014, 18, 509–557.

    Google Scholar

    [6] G. E. Hu, Y. Meng and D. C. Yang, Weighted norm inequalities for multilinear Calderón-Zygmund operators on non-homogeneous metric measure spaces, Forum Math., 2014, 26(5), 1289–1322. doi: 10.1515/forum-2011-0042

    CrossRef Google Scholar

    [7] A. W. Huang and J. S. Xu, Multilinear singular integrals and commutators in variable exponent Lebesgue spaces, Appl. Math. J. Chinese Univ. Ser., 2010, 25(1), 69–77. doi: 10.1007/s11766-010-2167-3

    CrossRef Google Scholar

    [8] T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Ration. Mech. Anal., 1992, 119(2), 129–143. doi: 10.1007/BF00375119

    CrossRef Google Scholar

    [9] M. Izuki, Herz and amalgam spaces with variable exponent, the Haar wavelets and greediness of the wavelet system, East J. Approx., 2009, 15(1), 87–109.

    Google Scholar

    [10] M. Izuki, Boundedness of commutators on Herz spaces with variable exponent, Rend. Circ. Mat. Palermo., 2010, 59(2), 199–213. doi: 10.1007/s12215-010-0015-1

    CrossRef Google Scholar

    [11] G. H. Lu, Bilinear θ-type Calderón-Zygmund operator and its commutator on non-homogeneous weighted Morrey spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 2021, 115(1), 1–15. doi: 10.1007/s13398-020-00944-x

    CrossRef Google Scholar

    [12] G. H. Lu and L. Rui, θ-type generalized fractional integral and its commutator on some non-homogeneous variable exponent spaces, AIMS Math., 2021, 6(9), 9619–9632. doi: 10.3934/math.2021560

    CrossRef Google Scholar

    [13] G. H. Lu and S. P. Tao, Bilinear θ-type generalized fractional integral operator and its commutator on some non-homogeneous spaces, Bull. Sci. Math., 2022, 174, 1–32.

    Google Scholar

    [14] G. H. Lu and S. P. Tao, Two-weighted estimate for generalized fractional integral and its commutator on generalized fractional Morrey spaces, J. Math. Study., 2023, 56(4), 345–356. doi: 10.4208/jms.v56n4.23.03

    CrossRef Google Scholar

    [15] G. H. Lu and S. P. Tao, Bilinear θ-type generalized fractional integral and its commutator on nonhomogeneous metric measure spaces, Rocky Mountain J. Math., 2023, 53(3), 839–857.

    Google Scholar

    [16] G. H. Lu and S. P. Tao, Two classes of bilinear fractional integral operators and their commutators on generalized fractional Morrey spaces, J. Pseudo-Differ. Oper. Appl., 2021, 12(4), 1–24.

    Google Scholar

    [17] G. H. Lu, S. P. Tao and R. H. Liu, θ-type Calderón-Zygmund operator and its commutator on (grand) generalized weighted variable exponent Morrey space over RD-spaces, J. Pseudo-Differ. Oper. Appl., 2023, 14(4), 1–22.

    Google Scholar

    [18] G. H. Lu, S. P. Tao and M. M. Wang, Estimates for bilinear generalized fractional integral operator and its commutator on generalized Morrey spaces over RD-spaces, Ann. Funct. Anal., 2024, 15(1), 1–47. doi: 10.1007/s43034-023-00302-z

    CrossRef Google Scholar

    [19] G. H. Lu, M. M. Wang and S. P. Tao, Estimates for bilinear θ-type generalized fractional integral and its commutator on new non-homogeneous generalized Morrey spaces, Anal. Geom. Metr. Spaces, 2023, 11(1), 1–24.

    Google Scholar

    [20] H. Nafis, H. Rafeiro and M. A. Zaighum, A note on the boundedness of sublinear operators on grand variable Herz spaces, J. Inequal. Appl., 2020, 2020(1), 1–13. doi: 10.1186/s13660-019-2265-6

    CrossRef Google Scholar

    [21] H. Nafis, H. Rafeiro and M. A. Zaighum, Boundedness of multilinear Calderón-Zygmund operators on grand variable Herz spaces, J. Funct. Spaces, 2022, 2022(1), 1–11.

    Google Scholar

    [22] B. Sultan, F. Azmi, M. Sultan, M. Mehmood and N. Mlaiki, Boundedness of Riesz potential operator on grand Herz-Morrey spaces, Axioms, 2022, 11(583), 1–14.

    Google Scholar

    [23] B. Sultan, M. Sultan and F. Gübüz, BMO estimate for the higher order commutators of Marcinkiewicz integral operator on grand variable Herz-Morrey spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 2023, 72(4), 1000–1018. doi: 10.31801/cfsuasmas.1328691

    CrossRef Google Scholar

    [24] M. Sultan, B. Sultan and A. Hussain, Grand Herz-Morrey spaces with variable exponent, Math. Notes., 2023, 114(5–6), 957–977.

    Google Scholar

    [25] L. W. Wang, Parametrized Littlewood-Paley operators on grand variable Herz spaces, Ann. Funct. Anal., 2022, 13(4), 1–26.

    Google Scholar

    [26] S. Yang, J. W. Sun and B. D. Li, Maximal and Calderón-Zygmund operators in grand variable Lebesgue spaces, Banach J. Math. Anal., 2023, 17(3), 1–28.

    Google Scholar

Article Metrics

Article views(56) PDF downloads(25) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint