Citation: | Jinqi Wang, Xijuan Chen. MAPPING PROPERTY FOR BILINEAR $\Theta$-TYPE GENERALIZED FRACTIONAL INTEGRAL OPERATOR ON GRAND VARIABLE EXPONENTS HERZ-MORREY SPACES[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2761-2785. doi: 10.11948/20240525 |
The aim of this paper is to establish the boundedness of the bilinear $ \theta $-type generalized fractional integral operators $ B\widetilde{T}_{\beta,\theta} $ and their commutators $ B\widetilde{T}_{\beta,\theta,b_1,b_2} $, generated by $ b_1,b_2\in\mathrm{BMO}(\mathbb{R}^n) $ and $ B\widetilde{T}_{\beta,\theta} $, on Lebesgue spaces with variable exponent $ L^{q(\cdot)}(\mathbb{R}^{n}) $. Under the assumption that variable exponents $ \alpha(\cdot) $ and $ q_{i}(\cdot) $ for $ i=1,2 $ satisfy the $ \log $ decay at both infinity and the origin, the authors prove that the $ B\widetilde{T}_{\beta,\theta} $ and $ B\widetilde{T}_{\beta,\theta,b_1,b_2} $ are bounded on the grand variable exponents Herz spaces $ \dot{K}_{q(\cdot)}^{\alpha(\cdot),p),\theta}(\mathbb{R}^n)\big(\hbox{or}\ K_{q(\cdot)}^{\alpha(\cdot),p),\theta}(\mathbb{R}^n)\big) $ and grand variable exponents Herz-Morrey spaces $ M\dot{K}_{p),\theta,q(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^n)\big(\hbox{or}\ MK_{p),\theta,q(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^n)\big) $, respectively.
[1] | I. Aarab and M. A. Tagmouti, Harmonic oscillator perturbed by a decreasing scalar potential, J. Pseudo-Differ. Oper. Appl., 2020, 11(1), 141–157. doi: 10.1007/s11868-019-00284-4 |
[2] | E. Berezhnoi and A. Karapetyants, Grand and small norms in Lebesgue spaces, Math. Methods Appl. Sci., 2024, 47(2), 725–741. doi: 10.1002/mma.9679 |
[3] | X. J. Chen, G. H. Lu and W. W. Tao, Fractional type Marcinkiewicz integral and its commutator on grand variable Herz-Morrey spaces, J. Pseudo-Differ. Oper. Appl., 2024, 15(3), 1–19. |
[4] | D. Cruz-Uribe, A. Fiorenza, J. M. Martell and C. Pérez, The boundedness of classical operators on variable Lp spaces, Ann. Acad. Sci. Fenn. Math., 2006, 31(1), 239–264. |
[5] | X. Fu, D. C. Yang and W. Yuan, Generalized fractional integrals and their commutators over non-homogeneous metric measure spaces, Taiwan. J. Math., 2014, 18, 509–557. |
[6] | G. E. Hu, Y. Meng and D. C. Yang, Weighted norm inequalities for multilinear Calderón-Zygmund operators on non-homogeneous metric measure spaces, Forum Math., 2014, 26(5), 1289–1322. doi: 10.1515/forum-2011-0042 |
[7] | A. W. Huang and J. S. Xu, Multilinear singular integrals and commutators in variable exponent Lebesgue spaces, Appl. Math. J. Chinese Univ. Ser., 2010, 25(1), 69–77. doi: 10.1007/s11766-010-2167-3 |
[8] | T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Ration. Mech. Anal., 1992, 119(2), 129–143. doi: 10.1007/BF00375119 |
[9] | M. Izuki, Herz and amalgam spaces with variable exponent, the Haar wavelets and greediness of the wavelet system, East J. Approx., 2009, 15(1), 87–109. |
[10] | M. Izuki, Boundedness of commutators on Herz spaces with variable exponent, Rend. Circ. Mat. Palermo., 2010, 59(2), 199–213. doi: 10.1007/s12215-010-0015-1 |
[11] | G. H. Lu, Bilinear θ-type Calderón-Zygmund operator and its commutator on non-homogeneous weighted Morrey spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 2021, 115(1), 1–15. doi: 10.1007/s13398-020-00944-x |
[12] | G. H. Lu and L. Rui, θ-type generalized fractional integral and its commutator on some non-homogeneous variable exponent spaces, AIMS Math., 2021, 6(9), 9619–9632. doi: 10.3934/math.2021560 |
[13] | G. H. Lu and S. P. Tao, Bilinear θ-type generalized fractional integral operator and its commutator on some non-homogeneous spaces, Bull. Sci. Math., 2022, 174, 1–32. |
[14] | G. H. Lu and S. P. Tao, Two-weighted estimate for generalized fractional integral and its commutator on generalized fractional Morrey spaces, J. Math. Study., 2023, 56(4), 345–356. doi: 10.4208/jms.v56n4.23.03 |
[15] | G. H. Lu and S. P. Tao, Bilinear θ-type generalized fractional integral and its commutator on nonhomogeneous metric measure spaces, Rocky Mountain J. Math., 2023, 53(3), 839–857. |
[16] | G. H. Lu and S. P. Tao, Two classes of bilinear fractional integral operators and their commutators on generalized fractional Morrey spaces, J. Pseudo-Differ. Oper. Appl., 2021, 12(4), 1–24. |
[17] | G. H. Lu, S. P. Tao and R. H. Liu, θ-type Calderón-Zygmund operator and its commutator on (grand) generalized weighted variable exponent Morrey space over RD-spaces, J. Pseudo-Differ. Oper. Appl., 2023, 14(4), 1–22. |
[18] | G. H. Lu, S. P. Tao and M. M. Wang, Estimates for bilinear generalized fractional integral operator and its commutator on generalized Morrey spaces over RD-spaces, Ann. Funct. Anal., 2024, 15(1), 1–47. doi: 10.1007/s43034-023-00302-z |
[19] | G. H. Lu, M. M. Wang and S. P. Tao, Estimates for bilinear θ-type generalized fractional integral and its commutator on new non-homogeneous generalized Morrey spaces, Anal. Geom. Metr. Spaces, 2023, 11(1), 1–24. |
[20] | H. Nafis, H. Rafeiro and M. A. Zaighum, A note on the boundedness of sublinear operators on grand variable Herz spaces, J. Inequal. Appl., 2020, 2020(1), 1–13. doi: 10.1186/s13660-019-2265-6 |
[21] | H. Nafis, H. Rafeiro and M. A. Zaighum, Boundedness of multilinear Calderón-Zygmund operators on grand variable Herz spaces, J. Funct. Spaces, 2022, 2022(1), 1–11. |
[22] | B. Sultan, F. Azmi, M. Sultan, M. Mehmood and N. Mlaiki, Boundedness of Riesz potential operator on grand Herz-Morrey spaces, Axioms, 2022, 11(583), 1–14. |
[23] | B. Sultan, M. Sultan and F. Gübüz, BMO estimate for the higher order commutators of Marcinkiewicz integral operator on grand variable Herz-Morrey spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 2023, 72(4), 1000–1018. doi: 10.31801/cfsuasmas.1328691 |
[24] | M. Sultan, B. Sultan and A. Hussain, Grand Herz-Morrey spaces with variable exponent, Math. Notes., 2023, 114(5–6), 957–977. |
[25] | L. W. Wang, Parametrized Littlewood-Paley operators on grand variable Herz spaces, Ann. Funct. Anal., 2022, 13(4), 1–26. |
[26] | S. Yang, J. W. Sun and B. D. Li, Maximal and Calderón-Zygmund operators in grand variable Lebesgue spaces, Banach J. Math. Anal., 2023, 17(3), 1–28. |