2025 Volume 15 Issue 5
Article Contents

Xiaoping Xu, Ziang Shen, Shangzhi Liu, Qixiang Dong. EXISTENCE AND HYERS-ULAM STABILITY FOR BOUNDARY VALUE PROBLEMS OF TWO-TERM FRACTIONAL DIFFERENTIAL EQUATIONS WITH $ \kappa $-CAPUTO DERIVATIVE[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2786-2804. doi: 10.11948/20240526
Citation: Xiaoping Xu, Ziang Shen, Shangzhi Liu, Qixiang Dong. EXISTENCE AND HYERS-ULAM STABILITY FOR BOUNDARY VALUE PROBLEMS OF TWO-TERM FRACTIONAL DIFFERENTIAL EQUATIONS WITH $ \kappa $-CAPUTO DERIVATIVE[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2786-2804. doi: 10.11948/20240526

EXISTENCE AND HYERS-ULAM STABILITY FOR BOUNDARY VALUE PROBLEMS OF TWO-TERM FRACTIONAL DIFFERENTIAL EQUATIONS WITH $ \kappa $-CAPUTO DERIVATIVE

  • This paper is concerned with a class of nonlinear fractional differential equations with two-term $ \kappa $-Caputo fractional derivatives. The existence and uniqueness results are obtained for boundary value problems by using the Banach fixed point theorem and Leray-Schauder nonlinear alternative. The Hyers-Ulam stability is also considered. Some examples are discussed to illustrate the obtained results.

    MSC: 34A08, 34D20, 47H10
  • 加载中
  • [1] R. Almeida, Fractional differential equations with mixed boundary conditions, Bull. Malays. Math. Sci. Soc. 2019, 42(4), 1687–1697. doi: 10.1007/s40840-017-0569-6

    CrossRef Google Scholar

    [2] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 2017, 44, 460–481. doi: 10.1016/j.cnsns.2016.09.006

    CrossRef Google Scholar

    [3] Z. Bai and H. Lu, Positive solutions for a boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 2005, 311, 495–505. doi: 10.1016/j.jmaa.2005.02.052

    CrossRef Google Scholar

    [4] K. Diethelm, The Analysis of Fractional Differential Equations, Springer Heidelberg, Berlin, 2010.

    Google Scholar

    [5] Q. Dong, C. Liu and Z. Fan, Weighted fractional differential equations with infinite delay in Banach spaces, Open Math., 2016, 14, 370–383. doi: 10.1515/math-2016-0035

    CrossRef Google Scholar

    [6] R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, 2nd ed, Springer Nature, 2020.

    Google Scholar

    [7] J. Hadamard, Essai sur l'étude des fonctions, donnoes par leur developpement de Taylor, J. Math. Pures Appl., 1892, 8, 101–186.

    Google Scholar

    [8] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.

    Google Scholar

    [9] F. Jarad, T. Abdeljawad and D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Difference Equ., 2012, 2012, 142. doi: 10.1186/1687-1847-2012-142

    CrossRef Google Scholar

    [10] E. R. Kaufmann and K. D. Yao, Existence of solutions for a nonlinear fractional order differential equation, Electronic J. Diff. Quali. Theory Equati., 2009, 71, 1–9.

    Google Scholar

    [11] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204, Elsevier, Amsterdam, 2006.

    Google Scholar

    [12] X. Li and P. J. Y. Wong, Two new approximations for generalized Caputo fractional derivative and their application in solving generalized fractional sub-diffusion equations, J. Appl. Math. Comput., 2023, 69, 4689–4716. doi: 10.1007/s12190-023-01944-x

    CrossRef Google Scholar

    [13] B. P. Moghaddam and J. A. Machado, Computational scheme for solving nonlinear fractional stochastic differential equations with delay, Stoch. Anal. Appl., 2019, 37, 893–908. doi: 10.1080/07362994.2019.1621182

    CrossRef Google Scholar

    [14] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

    Google Scholar

    [15] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Switzerland, 1993.

    Google Scholar

    [16] A. Selvam, S. Sabarinathan, S. Pinelas and V. Suvitha, Existence and stability of Ulam-Hyers for neutral stochastic functional differential equations, Bull. Iranian Math. Soc., 2024, 50(1), 1–18. doi: 10.1007/s41980-023-00827-y

    CrossRef Google Scholar

    [17] A. Simoes and P. Selvan, Hyers-Ulam stability of a certain Fredholm integral equation, Turkish J. Math., 2022, 46(1), 87–98.

    Google Scholar

    [18] D. R. Smart, Fixed-Point Theorems, Cambridge Tracts in Mathematics, London, UK; New York, MY, USA: Cambridge University Press, London, New York, 1974.

    Google Scholar

    [19] S. Z. Song, T. M. Rassias and S. I. Butt, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Vol. 48, Springer Science & Business Media, 2011.

    Google Scholar

    [20] J. V. Da C. Sousa and E. C. De Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., 2018, 81, 50–56. doi: 10.1016/j.aml.2018.01.016

    CrossRef Google Scholar

    [21] J. V. Da C. Sousa and E. C. De Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 2018, 60, 72–91. doi: 10.1016/j.cnsns.2018.01.005

    CrossRef Google Scholar

    [22] H. Sun, A. Chang, Y. Zhang and W. Chen, A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications, Numerical Methods and Applications, 2019, 22, 27–59.

    Google Scholar

    [23] O. Tunc and C. Tunc, On Ulam stabilities of delay hammerstein integral equation, Symmetry, 2023, 15(9), 1736–1752. doi: 10.3390/sym15091736

    CrossRef Google Scholar

    [24] H. Vu, J. Rassias and N. V. Hoa, Hyers-Ulam stability for boundary value problem of fractional differential equations with κ-Caputo fractional derivative, Math. Methods Appl. Sci., 2022, 46(1), 438–460.

    Google Scholar

    [25] J. Wang, L. Lv and Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., 2011, 63, 1–10.

    Google Scholar

    [26] H. Yao, W. Jin and Q. Dong, Hyers-Ulam-Rassias stability of κ-Caputo fractional differential equations, J. Appl. Anal. Comput., 2024, 14(5), 2903–2921.

    Google Scholar

Article Metrics

Article views(95) PDF downloads(49) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint