Citation: | Zewen Gong, Hongmei Cheng, Rong Yuan. PROPAGATION DYNAMICS OF FORCED PULSATING WAVES OF A TIME PERIODIC LOTKA-VOLTERRA COOPERATIVE SYSTEM WITH NONLOCAL DIFFUSION IN SHIFTING[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2805-2830. doi: 10.11948/20240531 |
In this paper, we will concern the existence, asymptotics and stability of forced pulsating waves in a Lotka-Volterra cooperative system with nonlocal diffusion under shifting habitats. By using alternatively-coupling upper-lower solution method, we establish the existence of forced pulsating waves for any given positive speed of the shifting habitat. The asymptotic behaviors of the forced pulsating waves are derived. Finally, with proper initial value, the stability of the forced pulsating waves is studied by the squeezing technique based on the comparison principle.
[1] | M. Alfaro, H. Berestycki and G. Raoul, The effect of climate shift on a species submitted to dispersion, evolution, growth and nonlocal competition, SIAM J. Math. Anal., 2017, 49(1), 562–596. doi: 10.1137/16M1075934 |
[2] | H. Berestycki, O. Diekmann, C. Nagelkerke and P. Zegeling, Can a species keep pace with a shifting climate?, Bull. Math. Biol., 2009, 71(2), 399–429. doi: 10.1007/s11538-008-9367-5 |
[3] | H. Berestycki and J. Fang, Forced waves of the Fisher-KPP equation in a shifting environment, J. Differ. Equations, 2018, 264(3), 2157–2183. doi: 10.1016/j.jde.2017.10.016 |
[4] | R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, John Wiley and Sons Inc, 2003. |
[5] | J. Coville, J. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differ. Equations, 2007, 244(12), 3080–3118. |
[6] | M. Davis and R. Shaw, Range shifts and adaptive responses to quaternary climate change, Science, 2001, 292(5517), 673–679. doi: 10.1126/science.292.5517.673 |
[7] | F. Dong, B. Li and W. Li, Forced waves in a Lotka-Volterra competition-diffusion model with a shifting habitat, J. Differ. Equations, 2021, 276(1), 433–459. |
[8] | J. Fang, Y. Lou and J. Wu, Can pathogen spread keep pace with its host invasion?, SIAM J. Appl. Math., 2016, 76(4), 1633–1657. doi: 10.1137/15M1029564 |
[9] | J. Fang, R. Peng and X. Zhao, Propagation dynamics of areaction-diffusion equation in a time-periodic shifting environment, J. Math. Pures Appl., 2021, 147, 1–28. doi: 10.1016/j.matpur.2021.01.001 |
[10] | Q. Fang, H. Cheng and R. Yuan, Spatial dynamics of some modifed Leslie-Gower prey-predator model with shifting habitat, J. Math. Anal. Appl., 2023, 518(2), 126713. doi: 10.1016/j.jmaa.2022.126713 |
[11] | Q. Fang, H. Cheng and R. Yuan, Spatial dynamics of a nonlocal dispersal Leslie-Gower predator-prey model with some shifting habitats, Discrete Cont. Dyn.-S, 2023, 43, 2985–3007. doi: 10.3934/dcds.2023037 |
[12] | Q. Guo and H. Cheng, Existence of forced waves and their asymptotics for Leslie-Gower prey-predator model with some shifting environments, Discrete Contin. Dyn. Syst. Ser. B, 2024, 29(5), 2419–2434. doi: 10.3934/dcdsb.2023184 |
[13] | H. Hu, L. Deng and J. Huang, Traveling wave of a nonlocal dispersal Lotka-Volterra cooperation model under shifting habitat, J. Math. Anal. Appl., 2021, 500(1), 125100. doi: 10.1016/j.jmaa.2021.125100 |
[14] | C. Lee, Non-local concepts and models in biology, J. Theor. Biol., 2001, 210(2), 201–219. doi: 10.1006/jtbi.2000.2287 |
[15] | W. Li, J. Wang and X. Zhao, Spatial dynamics of a nonlocal dispersal population model in a shifting environment, J. Nonlinear Sci., 2018, 28(4), 1189–1219. doi: 10.1007/s00332-018-9445-2 |
[16] | W. Li, J. Wang and X. Zhao, Propagation dynamics in a time periodic nonlocal dispersal model with stage structure, J. Dyn. Differ. Equations, 2019, 32(2), 1–38. doi: 10.1007/s10884-019-09760-3?utm_source=xmol&utm_content=meta |
[17] | W. Li, L. Zhang and G. Zhang, Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Contin. Dyn. Syst., 2015, 35(4), 1531–1560. doi: 10.3934/dcds.2015.35.1531 |
[18] | X. Liang, Y. Yi and X. Zhao, Spreading speeds and traveling waves for periodic evolution systems, J. Differ. Equations, 2006, 231(6), 57–77. |
[19] | G. Lin, Asymptotic spreading fastened by inter-specific coupled nonlinearities: A cooperative system, Phys. D., 2012, 241(6), 705–710. doi: 10.1016/j.physd.2011.12.007 |
[20] | T. Newbold, Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios, Proc. R. Soc. B, 2018, 285(1881), 20180792. doi: 10.1098/rspb.2018.0792 |
[21] | S. Niu, H. Cheng and R. Yuan, A free boundary problem of some modified Leslie-Gower predator-prey model with nonlocal diffusion term, Discrete Contin. Dyn. Syst. Ser. B, 2022, 27(4), 2189–2219. doi: 10.3934/dcdsb.2021129 |
[22] | L. Pang and S. Wu, Time-periodic traveling waves for a periodic Lotka-Volterra competition system with nonlocal dispersal, Commun. Nonlinear Sci., 2023, 119, 107130. doi: 10.1016/j.cnsns.2023.107130 |
[23] | L. Pang, S. Wu and S. Ruan, Long time behaviors for a periodic Lotka-Volterra strong competition-diffusion system, Calc. Var. PDE, 2023, 62, 99. doi: 10.1007/s00526-023-02436-3 |
[24] | A. Perry, P. Low, J. Ellis and J. Reynolds, Climate change and distribution shifts in marine Fishes, Science, 2005, 308(5730), 1912–1915. doi: 10.1126/science.1111322 |
[25] | A. Potapov and M. Lewis, Climate and competition: The effect of moving range boundaries on habitat invasibility, Bull. Math. Biol., 20024, 66(5), 975–1008. |
[26] | S. Qiao, W. Li and J. Wang, Propagation dynamics of nonlocal dispersal competition systems in time-periodic shifting habitats, J. Differ. Equations, 2024, 378, 399–459. doi: 10.1016/j.jde.2023.09.027 |
[27] | J. Smoller, Shock Waves and Reaction Difhusion Equations, Springer-Verlag, New York, 1994. |
[28] | Z. Teng, L. Chen, Global asymptotic stability of periodic Lotka-Volterra systems with delays, Nonlinear Anal., 2001, 45, 1081–1095. doi: 10.1016/S0362-546X(99)00441-1 |
[29] | H. -H. Vo, Persistence versus extinction under a climate change in mixed environments, J. Differ. Equations, 2015, 259(10), 4947–4988. doi: 10.1016/j.jde.2015.06.014 |
[30] | G. Walther, E. Post, P. Convey, et al., Ecological responses to recent climate change, Nature, 2002, 416(6879), 389–395. doi: 10.1038/416389a |
[31] | H. Wang, C. Pan and C. Ou, Existence, uniqueness and stability of forced waves to the Lotka-Volterra competition system in a shifting environment, Stud. Appl. Math., 2022, 148(1), 186–218. doi: 10.1111/sapm.12438 |
[32] | J. Wang and W. Li, Wave propagation for a cooperative model with nonlocal dispersal under worsening habitats, Z. Angew. Math. Phys., 2020, 71, 147. doi: 10.1007/s00033-020-01374-w |
[33] | J. Wang, W. Li, F. Dong and S. Qiao, Recent developments on spatial propagation for diffusion equations in shifting environments, Discrete Contin. Dyn. Syst. Ser. B, 2022, 27, 5101–5127. doi: 10.3934/dcdsb.2021266 |
[34] | J. Wang and X. Zhao, Uniqueness and global stability of forced waves in a shifting environment, Proc. Amer. Math. Soc., 2018, 147(4), 1467–1481. doi: 10.1090/proc/14235 |
[35] | C. Wu, Y. Wang and X. Zou, Spatial-temporal dynamics of a Lotka-Volterra competition model with nonlocal dispersal under shifting environment, J. Differ. Equations, 2019, 267(8), 4890–4921. doi: 10.1016/j.jde.2019.05.019 |
[36] | C. Wu, Y. Yang and Z. Wu, Existence and uniqueness of forced waves in a delayed reaction-diffusion equation in a shifting environment, Nonlinear Anal. Real, 2021, 57, 103198. doi: 10.1016/j.nonrwa.2020.103198 |
[37] | Y. Xia, H. Cheng and R. Yuan, A free boundary problem of some modified Leslie-Gower predator-prey model with shifting environments, J. Appl. Anal. Comput., 2022, 12, 2396–2425. |
[38] | Y. Yang, C. Wu and Z. Li, Forced waves and their asymptotics in a Lotka-Volterra cooperative model under climate change, Appl. Math. Comput., 2019, 353, 254–264. |
[39] | Q. Ye, Z. Li, M. Wang and Y. Wu, Introduction to Reaction Diffusion Equations, Science Press, Beijing, 2011. |
[40] | G. Zhang, W. Li and Z. Wang, Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differ. Equations, 2011, 252(9), 5096–5124. |
[41] | G. Zhang and X. Zhao, Propagation dynamics of a nonlocal dispersal Fisher-KPP equation in a time-periodic shifting habitat, J. Differ. Equations, 2020, 268, 2852–2885. doi: 10.1016/j.jde.2019.09.044 |
[42] | G. Zhao and S. Ruan, Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion, J. Math. Pures Appl., 2011, 95(6), 627–671. doi: 10.1016/j.matpur.2010.11.005 |
[43] | R. Zhou, S. Wu and X. Bao, Propagation dynamics for space-time periodic and degenerate systems with nonlocal dispersal and delay, J. Nonlinear Sci., 2024, 34(4), 69. doi: 10.1007/s00332-024-10048-0 |