2025 Volume 15 Issue 5
Article Contents

Zewen Gong, Hongmei Cheng, Rong Yuan. PROPAGATION DYNAMICS OF FORCED PULSATING WAVES OF A TIME PERIODIC LOTKA-VOLTERRA COOPERATIVE SYSTEM WITH NONLOCAL DIFFUSION IN SHIFTING[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2805-2830. doi: 10.11948/20240531
Citation: Zewen Gong, Hongmei Cheng, Rong Yuan. PROPAGATION DYNAMICS OF FORCED PULSATING WAVES OF A TIME PERIODIC LOTKA-VOLTERRA COOPERATIVE SYSTEM WITH NONLOCAL DIFFUSION IN SHIFTING[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2805-2830. doi: 10.11948/20240531

PROPAGATION DYNAMICS OF FORCED PULSATING WAVES OF A TIME PERIODIC LOTKA-VOLTERRA COOPERATIVE SYSTEM WITH NONLOCAL DIFFUSION IN SHIFTING

  • In this paper, we will concern the existence, asymptotics and stability of forced pulsating waves in a Lotka-Volterra cooperative system with nonlocal diffusion under shifting habitats. By using alternatively-coupling upper-lower solution method, we establish the existence of forced pulsating waves for any given positive speed of the shifting habitat. The asymptotic behaviors of the forced pulsating waves are derived. Finally, with proper initial value, the stability of the forced pulsating waves is studied by the squeezing technique based on the comparison principle.

    MSC: 35A01, 35C07, 35K57
  • 加载中
  • [1] M. Alfaro, H. Berestycki and G. Raoul, The effect of climate shift on a species submitted to dispersion, evolution, growth and nonlocal competition, SIAM J. Math. Anal., 2017, 49(1), 562–596. doi: 10.1137/16M1075934

    CrossRef Google Scholar

    [2] H. Berestycki, O. Diekmann, C. Nagelkerke and P. Zegeling, Can a species keep pace with a shifting climate?, Bull. Math. Biol., 2009, 71(2), 399–429. doi: 10.1007/s11538-008-9367-5

    CrossRef Google Scholar

    [3] H. Berestycki and J. Fang, Forced waves of the Fisher-KPP equation in a shifting environment, J. Differ. Equations, 2018, 264(3), 2157–2183. doi: 10.1016/j.jde.2017.10.016

    CrossRef Google Scholar

    [4] R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, John Wiley and Sons Inc, 2003.

    Google Scholar

    [5] J. Coville, J. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differ. Equations, 2007, 244(12), 3080–3118.

    Google Scholar

    [6] M. Davis and R. Shaw, Range shifts and adaptive responses to quaternary climate change, Science, 2001, 292(5517), 673–679. doi: 10.1126/science.292.5517.673

    CrossRef Google Scholar

    [7] F. Dong, B. Li and W. Li, Forced waves in a Lotka-Volterra competition-diffusion model with a shifting habitat, J. Differ. Equations, 2021, 276(1), 433–459.

    Google Scholar

    [8] J. Fang, Y. Lou and J. Wu, Can pathogen spread keep pace with its host invasion?, SIAM J. Appl. Math., 2016, 76(4), 1633–1657. doi: 10.1137/15M1029564

    CrossRef Google Scholar

    [9] J. Fang, R. Peng and X. Zhao, Propagation dynamics of areaction-diffusion equation in a time-periodic shifting environment, J. Math. Pures Appl., 2021, 147, 1–28. doi: 10.1016/j.matpur.2021.01.001

    CrossRef Google Scholar

    [10] Q. Fang, H. Cheng and R. Yuan, Spatial dynamics of some modifed Leslie-Gower prey-predator model with shifting habitat, J. Math. Anal. Appl., 2023, 518(2), 126713. doi: 10.1016/j.jmaa.2022.126713

    CrossRef Google Scholar

    [11] Q. Fang, H. Cheng and R. Yuan, Spatial dynamics of a nonlocal dispersal Leslie-Gower predator-prey model with some shifting habitats, Discrete Cont. Dyn.-S, 2023, 43, 2985–3007. doi: 10.3934/dcds.2023037

    CrossRef Google Scholar

    [12] Q. Guo and H. Cheng, Existence of forced waves and their asymptotics for Leslie-Gower prey-predator model with some shifting environments, Discrete Contin. Dyn. Syst. Ser. B, 2024, 29(5), 2419–2434. doi: 10.3934/dcdsb.2023184

    CrossRef Google Scholar

    [13] H. Hu, L. Deng and J. Huang, Traveling wave of a nonlocal dispersal Lotka-Volterra cooperation model under shifting habitat, J. Math. Anal. Appl., 2021, 500(1), 125100. doi: 10.1016/j.jmaa.2021.125100

    CrossRef Google Scholar

    [14] C. Lee, Non-local concepts and models in biology, J. Theor. Biol., 2001, 210(2), 201–219. doi: 10.1006/jtbi.2000.2287

    CrossRef Google Scholar

    [15] W. Li, J. Wang and X. Zhao, Spatial dynamics of a nonlocal dispersal population model in a shifting environment, J. Nonlinear Sci., 2018, 28(4), 1189–1219. doi: 10.1007/s00332-018-9445-2

    CrossRef Google Scholar

    [16] W. Li, J. Wang and X. Zhao, Propagation dynamics in a time periodic nonlocal dispersal model with stage structure, J. Dyn. Differ. Equations, 2019, 32(2), 1–38. doi: 10.1007/s10884-019-09760-3?utm_source=xmol&utm_content=meta

    CrossRef Google Scholar

    [17] W. Li, L. Zhang and G. Zhang, Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Contin. Dyn. Syst., 2015, 35(4), 1531–1560. doi: 10.3934/dcds.2015.35.1531

    CrossRef Google Scholar

    [18] X. Liang, Y. Yi and X. Zhao, Spreading speeds and traveling waves for periodic evolution systems, J. Differ. Equations, 2006, 231(6), 57–77.

    Google Scholar

    [19] G. Lin, Asymptotic spreading fastened by inter-specific coupled nonlinearities: A cooperative system, Phys. D., 2012, 241(6), 705–710. doi: 10.1016/j.physd.2011.12.007

    CrossRef Google Scholar

    [20] T. Newbold, Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios, Proc. R. Soc. B, 2018, 285(1881), 20180792. doi: 10.1098/rspb.2018.0792

    CrossRef Google Scholar

    [21] S. Niu, H. Cheng and R. Yuan, A free boundary problem of some modified Leslie-Gower predator-prey model with nonlocal diffusion term, Discrete Contin. Dyn. Syst. Ser. B, 2022, 27(4), 2189–2219. doi: 10.3934/dcdsb.2021129

    CrossRef Google Scholar

    [22] L. Pang and S. Wu, Time-periodic traveling waves for a periodic Lotka-Volterra competition system with nonlocal dispersal, Commun. Nonlinear Sci., 2023, 119, 107130. doi: 10.1016/j.cnsns.2023.107130

    CrossRef Google Scholar

    [23] L. Pang, S. Wu and S. Ruan, Long time behaviors for a periodic Lotka-Volterra strong competition-diffusion system, Calc. Var. PDE, 2023, 62, 99. doi: 10.1007/s00526-023-02436-3

    CrossRef Google Scholar

    [24] A. Perry, P. Low, J. Ellis and J. Reynolds, Climate change and distribution shifts in marine Fishes, Science, 2005, 308(5730), 1912–1915. doi: 10.1126/science.1111322

    CrossRef Google Scholar

    [25] A. Potapov and M. Lewis, Climate and competition: The effect of moving range boundaries on habitat invasibility, Bull. Math. Biol., 20024, 66(5), 975–1008.

    Google Scholar

    [26] S. Qiao, W. Li and J. Wang, Propagation dynamics of nonlocal dispersal competition systems in time-periodic shifting habitats, J. Differ. Equations, 2024, 378, 399–459. doi: 10.1016/j.jde.2023.09.027

    CrossRef Google Scholar

    [27] J. Smoller, Shock Waves and Reaction Difhusion Equations, Springer-Verlag, New York, 1994.

    Google Scholar

    [28] Z. Teng, L. Chen, Global asymptotic stability of periodic Lotka-Volterra systems with delays, Nonlinear Anal., 2001, 45, 1081–1095. doi: 10.1016/S0362-546X(99)00441-1

    CrossRef Google Scholar

    [29] H. -H. Vo, Persistence versus extinction under a climate change in mixed environments, J. Differ. Equations, 2015, 259(10), 4947–4988. doi: 10.1016/j.jde.2015.06.014

    CrossRef Google Scholar

    [30] G. Walther, E. Post, P. Convey, et al., Ecological responses to recent climate change, Nature, 2002, 416(6879), 389–395. doi: 10.1038/416389a

    CrossRef Google Scholar

    [31] H. Wang, C. Pan and C. Ou, Existence, uniqueness and stability of forced waves to the Lotka-Volterra competition system in a shifting environment, Stud. Appl. Math., 2022, 148(1), 186–218. doi: 10.1111/sapm.12438

    CrossRef Google Scholar

    [32] J. Wang and W. Li, Wave propagation for a cooperative model with nonlocal dispersal under worsening habitats, Z. Angew. Math. Phys., 2020, 71, 147. doi: 10.1007/s00033-020-01374-w

    CrossRef Google Scholar

    [33] J. Wang, W. Li, F. Dong and S. Qiao, Recent developments on spatial propagation for diffusion equations in shifting environments, Discrete Contin. Dyn. Syst. Ser. B, 2022, 27, 5101–5127. doi: 10.3934/dcdsb.2021266

    CrossRef Google Scholar

    [34] J. Wang and X. Zhao, Uniqueness and global stability of forced waves in a shifting environment, Proc. Amer. Math. Soc., 2018, 147(4), 1467–1481. doi: 10.1090/proc/14235

    CrossRef Google Scholar

    [35] C. Wu, Y. Wang and X. Zou, Spatial-temporal dynamics of a Lotka-Volterra competition model with nonlocal dispersal under shifting environment, J. Differ. Equations, 2019, 267(8), 4890–4921. doi: 10.1016/j.jde.2019.05.019

    CrossRef Google Scholar

    [36] C. Wu, Y. Yang and Z. Wu, Existence and uniqueness of forced waves in a delayed reaction-diffusion equation in a shifting environment, Nonlinear Anal. Real, 2021, 57, 103198. doi: 10.1016/j.nonrwa.2020.103198

    CrossRef Google Scholar

    [37] Y. Xia, H. Cheng and R. Yuan, A free boundary problem of some modified Leslie-Gower predator-prey model with shifting environments, J. Appl. Anal. Comput., 2022, 12, 2396–2425.

    Google Scholar

    [38] Y. Yang, C. Wu and Z. Li, Forced waves and their asymptotics in a Lotka-Volterra cooperative model under climate change, Appl. Math. Comput., 2019, 353, 254–264.

    Google Scholar

    [39] Q. Ye, Z. Li, M. Wang and Y. Wu, Introduction to Reaction Diffusion Equations, Science Press, Beijing, 2011.

    Google Scholar

    [40] G. Zhang, W. Li and Z. Wang, Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differ. Equations, 2011, 252(9), 5096–5124.

    Google Scholar

    [41] G. Zhang and X. Zhao, Propagation dynamics of a nonlocal dispersal Fisher-KPP equation in a time-periodic shifting habitat, J. Differ. Equations, 2020, 268, 2852–2885. doi: 10.1016/j.jde.2019.09.044

    CrossRef Google Scholar

    [42] G. Zhao and S. Ruan, Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion, J. Math. Pures Appl., 2011, 95(6), 627–671. doi: 10.1016/j.matpur.2010.11.005

    CrossRef Google Scholar

    [43] R. Zhou, S. Wu and X. Bao, Propagation dynamics for space-time periodic and degenerate systems with nonlocal dispersal and delay, J. Nonlinear Sci., 2024, 34(4), 69. doi: 10.1007/s00332-024-10048-0

    CrossRef Google Scholar

Article Metrics

Article views(49) PDF downloads(28) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint