Citation: | Tiantian Zhang. GLOBAL CLASSICAL SOLUTIONS TO 3D COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH VACUUM IN PERIODIC DOMAIN[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2831-2852. doi: 10.11948/20240551 |
This paper concerns the global well-posedness of classical solutions to the Cauchy problem of the Navier-Stokes equations for viscous compressible barotropic flows in three spatial dimensions with periodic initial data with density allowed to vanish initially. We introduce the so-called the effective viscous flux which is the key for time-uniform upper bound of density. Based on these key ingredients, we are able to obtain the global solvability of classical solutions in three spatial dimensions, provided the smooth initial data are of small total energy. These results generalize previous results on classical solutions for initial densities being strictly away from vacuum.
[1] | J. T. Beal, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Commun. Math. Phys., 1984, 94(1), 61–66. doi: 10.1007/BF01212349 |
[2] | J. Bergh and J. Lofstrom, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin-Heidelberg-New York, 1976. |
[3] | G. Cai and J. Li, Existence and exponential growth of global classical solutions to the compressible Navier-Stokes equations with slip boundary conditions in 3D bounded domains, Indiana Univ. Math. J., 2023, 72(6), 2491–2546. doi: 10.1512/iumj.2023.72.9591 |
[4] | Y. Cao, H. Li and S. Zhu, Global spherically symmetric solutions to degenerate compressible Navier-Stokes equations with large data and far field vacuum, Calc. Var. Partial Differential Equations, 2024, 63(9), 230–276. doi: 10.1007/s00526-024-02835-0 |
[5] | Y. Cho, H. J. Choe and H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluid, J. Math. Pures Appl., 2004, 83(2), 243–275. doi: 10.1016/j.matpur.2003.11.004 |
[6] | Y. Cho and H. Kim, On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities, Manuscript Math., 2006, 120(1), 91–129. doi: 10.1007/s00229-006-0637-y |
[7] | H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids, J. Differ. Eqs., 2003, 190(2), 504–523. doi: 10.1016/S0022-0396(03)00015-9 |
[8] | Y. Choi and J. Jung, On regular solutions and singularity formation for Vlasov/Navier-Stokes equations with degenerate viscosities and vacuum, Kinet. Relat. Models, 2022, 15(5), 843–891. doi: 10.3934/krm.2022016 |
[9] | Q. Duan, Z. Xin, S. Zhu and H. Petzeltová, On regular solutions for three-dimensional full compressible Navier-Stokes equations with degenerate viscosities and far field vacuum, Arch. Ration. Mech. Anal., 2023, 247(1), 3–71. doi: 10.1007/s00205-022-01840-x |
[10] | E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004. |
[11] | E. Feireisl, A. Novotny and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 2001, 3(4), 358–392. doi: 10.1007/PL00000976 |
[12] | H. Fujita and T. Kato, On the Navier-Stokes initial value problem I, Archiv Rat. Mech. Anal., 1964, 16, 269–315. doi: 10.1007/BF00276188 |
[13] | D. Hoff, Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data, Trans, Amer. Math. Soc., 1987, 303(1), 169–181. doi: 10.1090/S0002-9947-1987-0896014-6 |
[14] | D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differ. Eqs., 1995, 120(1), 215–254. doi: 10.1006/jdeq.1995.1111 |
[15] | D. Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data, Arch. Rational Mech. Anal., 1995, 132(1), 1–14. doi: 10.1007/BF00390346 |
[16] | D. Hoff, Compressible flow in a half-space with Navier boundary conditions, J. Math. Fluid Mech., 2005, 7(3), 315–338. doi: 10.1007/s00021-004-0123-9 |
[17] | D. Hoff and E. Tsyganov, Time analyticity and backward uniqueness of weak solutions of the Navier-Stokes equations of multidimensional compressible flow, J. Differ. Eqs., 2008, 245(10), 3068–3094. doi: 10.1016/j.jde.2008.08.006 |
[18] | X. Huang, J. Li and Z. Xin, Blowup criterion for viscous barotropic flows with vacuum states, Commun. Math. Phys., 2011, 301(1), 23–35. doi: 10.1007/s00220-010-1148-y |
[19] | X. Huang, J. Li and Z. Xin, Serrin type criterion for the three-dimensional compressible flows, SIAM J. Math. Anal., 2011, 43(4), 1872–1886. doi: 10.1137/100814639 |
[20] | X. Huang, J. Li and Z. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure Appl. Math., 2012, 65(4), 549–585. doi: 10.1002/cpa.21382 |
[21] | X. Huang and Z. Xin, A blow-up criterion for classical solutions to the compressible Navier-Stokes equations, Sci. China Math., 2010, 53(3), 671–686. doi: 10.1007/s11425-010-0042-6 |
[22] | F. Huang, L. Xu and Q. Yuan, Asymptotic stability of planar rarefaction waves under periodic perturbations for 3-d Navier-Stokes equations, Adv. Math., 2022, 404(part B), 108452–108479. |
[23] |
T. Kato, Strong $L^{p}$-solutions of the Navier-Stokes equation in $R^{m}$, with applications to weak solutions, Math. Z., 1984, 187(4), 471–480. doi: 10.1007/BF01174182
CrossRef $L^{p}$-solutions of the Navier-Stokes equation in |
[24] | A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas, Prikl. Mat. Meh., 1977, 41(2), 282–291. |
[25] | H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 2001, 157(1), 22–35. doi: 10.1006/aima.2000.1937 |
[26] | O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968. |
[27] | J. Li and Z. Xin, Some uniform estimates and blowup behavior of global strong solutions to the Stokes approximation equations for two-dimensional compressible flows, J. Differ. Eqs., 2006, 221(2), 275–308. doi: 10.1016/j.jde.2005.08.012 |
[28] | J. Li and Z. Xin, Global well-posedness and large time asymptotic behavior of classical solutions to the compressible Navier-Stokes equations with vacuum, Ann. PDE, 2019, 5(1), 7–37. doi: 10.1007/s40818-019-0064-5 |
[29] | P. L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 2, Compressible models, Oxford University Press, New York, 1998. |
[30] | A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 1980, 20(1), 67–104. |
[31] | J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général, Bull. Soc. Math. France, 1962, 90, 487–497. |
[32] | R. Salvi and I. Straskraba, Global existence for viscous compressible fluids and their behavior as $t\rightarrow \infty$, J. Fac. Sci. Univ. Tokyo Sect. IA. Math., 1993, 40(1), 17–51. |
[33] | D. Serre, Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible, C. R. Acad. Sci. Paris Sér. I Math., 1986, 303(13), 639–642. |
[34] | D. Serre, Sur l'équation monodimensionnelle d'un fluide visqueux, compressible et conducteur de chaleur, C. R. Acad. Sci. Paris Sér. I Math., 1986, 303(14), 703–706. |
[35] | J. Serrin, On the uniqueness of compressible fluid motion, Arch. Rational. Mech. Anal., 1959, 3, 271–288. doi: 10.1007/BF00284180 |
[36] | A. A. Shlapunov and N. N. Tarkhanov, Inverse image of precompact sets and existence theorems for the Navier-Stokes equations in spatially periodic setting, Vestn. Udmurt. Univ. Mat. Mekh. Komp yut. Nauki, 2022, 32(2), 278–297. doi: 10.35634/vm220208 |
[37] | D. Wang and Z. Ye, Global existence and exponential decay of strong solutions for the inhomogeneous incompressible Navier-Stokes equations with vacuum, Methods Appl. Anal., 2022, 29(1), 57–93. doi: 10.4310/MAA.2022.v29.n1.a3 |
[38] | Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 1998, 51(3), 229–240. doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C |
[39] | A. A. Zlotnik, Uniform estimates and stabilization of symmetric solutions of a system of quasilinear equations, Diff. Equations, 2000, 36(5), 701–716. doi: 10.1007/BF02754229 |