2025 Volume 15 Issue 5
Article Contents

Tiantian Zhang. GLOBAL CLASSICAL SOLUTIONS TO 3D COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH VACUUM IN PERIODIC DOMAIN[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2831-2852. doi: 10.11948/20240551
Citation: Tiantian Zhang. GLOBAL CLASSICAL SOLUTIONS TO 3D COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH VACUUM IN PERIODIC DOMAIN[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2831-2852. doi: 10.11948/20240551

GLOBAL CLASSICAL SOLUTIONS TO 3D COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH VACUUM IN PERIODIC DOMAIN

  • This paper concerns the global well-posedness of classical solutions to the Cauchy problem of the Navier-Stokes equations for viscous compressible barotropic flows in three spatial dimensions with periodic initial data with density allowed to vanish initially. We introduce the so-called the effective viscous flux which is the key for time-uniform upper bound of density. Based on these key ingredients, we are able to obtain the global solvability of classical solutions in three spatial dimensions, provided the smooth initial data are of small total energy. These results generalize previous results on classical solutions for initial densities being strictly away from vacuum.

    MSC: Periodic 35Q30, 76N10
  • 加载中
  • [1] J. T. Beal, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Commun. Math. Phys., 1984, 94(1), 61–66. doi: 10.1007/BF01212349

    CrossRef Google Scholar

    [2] J. Bergh and J. Lofstrom, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin-Heidelberg-New York, 1976.

    Google Scholar

    [3] G. Cai and J. Li, Existence and exponential growth of global classical solutions to the compressible Navier-Stokes equations with slip boundary conditions in 3D bounded domains, Indiana Univ. Math. J., 2023, 72(6), 2491–2546. doi: 10.1512/iumj.2023.72.9591

    CrossRef Google Scholar

    [4] Y. Cao, H. Li and S. Zhu, Global spherically symmetric solutions to degenerate compressible Navier-Stokes equations with large data and far field vacuum, Calc. Var. Partial Differential Equations, 2024, 63(9), 230–276. doi: 10.1007/s00526-024-02835-0

    CrossRef Google Scholar

    [5] Y. Cho, H. J. Choe and H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluid, J. Math. Pures Appl., 2004, 83(2), 243–275. doi: 10.1016/j.matpur.2003.11.004

    CrossRef Google Scholar

    [6] Y. Cho and H. Kim, On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities, Manuscript Math., 2006, 120(1), 91–129. doi: 10.1007/s00229-006-0637-y

    CrossRef Google Scholar

    [7] H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids, J. Differ. Eqs., 2003, 190(2), 504–523. doi: 10.1016/S0022-0396(03)00015-9

    CrossRef Google Scholar

    [8] Y. Choi and J. Jung, On regular solutions and singularity formation for Vlasov/Navier-Stokes equations with degenerate viscosities and vacuum, Kinet. Relat. Models, 2022, 15(5), 843–891. doi: 10.3934/krm.2022016

    CrossRef Google Scholar

    [9] Q. Duan, Z. Xin, S. Zhu and H. Petzeltová, On regular solutions for three-dimensional full compressible Navier-Stokes equations with degenerate viscosities and far field vacuum, Arch. Ration. Mech. Anal., 2023, 247(1), 3–71. doi: 10.1007/s00205-022-01840-x

    CrossRef Google Scholar

    [10] E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004.

    Google Scholar

    [11] E. Feireisl, A. Novotny and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 2001, 3(4), 358–392. doi: 10.1007/PL00000976

    CrossRef Google Scholar

    [12] H. Fujita and T. Kato, On the Navier-Stokes initial value problem I, Archiv Rat. Mech. Anal., 1964, 16, 269–315. doi: 10.1007/BF00276188

    CrossRef Google Scholar

    [13] D. Hoff, Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data, Trans, Amer. Math. Soc., 1987, 303(1), 169–181. doi: 10.1090/S0002-9947-1987-0896014-6

    CrossRef Google Scholar

    [14] D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differ. Eqs., 1995, 120(1), 215–254. doi: 10.1006/jdeq.1995.1111

    CrossRef Google Scholar

    [15] D. Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data, Arch. Rational Mech. Anal., 1995, 132(1), 1–14. doi: 10.1007/BF00390346

    CrossRef Google Scholar

    [16] D. Hoff, Compressible flow in a half-space with Navier boundary conditions, J. Math. Fluid Mech., 2005, 7(3), 315–338. doi: 10.1007/s00021-004-0123-9

    CrossRef Google Scholar

    [17] D. Hoff and E. Tsyganov, Time analyticity and backward uniqueness of weak solutions of the Navier-Stokes equations of multidimensional compressible flow, J. Differ. Eqs., 2008, 245(10), 3068–3094. doi: 10.1016/j.jde.2008.08.006

    CrossRef Google Scholar

    [18] X. Huang, J. Li and Z. Xin, Blowup criterion for viscous barotropic flows with vacuum states, Commun. Math. Phys., 2011, 301(1), 23–35. doi: 10.1007/s00220-010-1148-y

    CrossRef Google Scholar

    [19] X. Huang, J. Li and Z. Xin, Serrin type criterion for the three-dimensional compressible flows, SIAM J. Math. Anal., 2011, 43(4), 1872–1886. doi: 10.1137/100814639

    CrossRef Google Scholar

    [20] X. Huang, J. Li and Z. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure Appl. Math., 2012, 65(4), 549–585. doi: 10.1002/cpa.21382

    CrossRef Google Scholar

    [21] X. Huang and Z. Xin, A blow-up criterion for classical solutions to the compressible Navier-Stokes equations, Sci. China Math., 2010, 53(3), 671–686. doi: 10.1007/s11425-010-0042-6

    CrossRef Google Scholar

    [22] F. Huang, L. Xu and Q. Yuan, Asymptotic stability of planar rarefaction waves under periodic perturbations for 3-d Navier-Stokes equations, Adv. Math., 2022, 404(part B), 108452–108479.

    Google Scholar

    [23] T. Kato, Strong $L^{p}$-solutions of the Navier-Stokes equation in $R^{m}$, with applications to weak solutions, Math. Z., 1984, 187(4), 471–480. doi: 10.1007/BF01174182

    CrossRef $L^{p}$-solutions of the Navier-Stokes equation in $R^{m}$, with applications to weak solutions" target="_blank">Google Scholar

    [24] A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas, Prikl. Mat. Meh., 1977, 41(2), 282–291.

    Google Scholar

    [25] H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 2001, 157(1), 22–35. doi: 10.1006/aima.2000.1937

    CrossRef Google Scholar

    [26] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968.

    Google Scholar

    [27] J. Li and Z. Xin, Some uniform estimates and blowup behavior of global strong solutions to the Stokes approximation equations for two-dimensional compressible flows, J. Differ. Eqs., 2006, 221(2), 275–308. doi: 10.1016/j.jde.2005.08.012

    CrossRef Google Scholar

    [28] J. Li and Z. Xin, Global well-posedness and large time asymptotic behavior of classical solutions to the compressible Navier-Stokes equations with vacuum, Ann. PDE, 2019, 5(1), 7–37. doi: 10.1007/s40818-019-0064-5

    CrossRef Google Scholar

    [29] P. L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 2, Compressible models, Oxford University Press, New York, 1998.

    Google Scholar

    [30] A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 1980, 20(1), 67–104.

    Google Scholar

    [31] J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général, Bull. Soc. Math. France, 1962, 90, 487–497.

    Google Scholar

    [32] R. Salvi and I. Straskraba, Global existence for viscous compressible fluids and their behavior as $t\rightarrow \infty$, J. Fac. Sci. Univ. Tokyo Sect. IA. Math., 1993, 40(1), 17–51.

    $t\rightarrow \infty$" target="_blank">Google Scholar

    [33] D. Serre, Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible, C. R. Acad. Sci. Paris Sér. I Math., 1986, 303(13), 639–642.

    Google Scholar

    [34] D. Serre, Sur l'équation monodimensionnelle d'un fluide visqueux, compressible et conducteur de chaleur, C. R. Acad. Sci. Paris Sér. I Math., 1986, 303(14), 703–706.

    Google Scholar

    [35] J. Serrin, On the uniqueness of compressible fluid motion, Arch. Rational. Mech. Anal., 1959, 3, 271–288. doi: 10.1007/BF00284180

    CrossRef Google Scholar

    [36] A. A. Shlapunov and N. N. Tarkhanov, Inverse image of precompact sets and existence theorems for the Navier-Stokes equations in spatially periodic setting, Vestn. Udmurt. Univ. Mat. Mekh. Komp yut. Nauki, 2022, 32(2), 278–297. doi: 10.35634/vm220208

    CrossRef Google Scholar

    [37] D. Wang and Z. Ye, Global existence and exponential decay of strong solutions for the inhomogeneous incompressible Navier-Stokes equations with vacuum, Methods Appl. Anal., 2022, 29(1), 57–93. doi: 10.4310/MAA.2022.v29.n1.a3

    CrossRef Google Scholar

    [38] Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 1998, 51(3), 229–240. doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C

    CrossRef Google Scholar

    [39] A. A. Zlotnik, Uniform estimates and stabilization of symmetric solutions of a system of quasilinear equations, Diff. Equations, 2000, 36(5), 701–716. doi: 10.1007/BF02754229

    CrossRef Google Scholar

Article Metrics

Article views(81) PDF downloads(34) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint