2026 Volume 16 Issue 1
Article Contents

Zouhair Diab, Feng Li, Meilan Cai. ON THE PERIODIC ORBITS OF CONTINUOUS THIRD-ORDER DIFFERENTIAL EQUATION WITH PIECEWISE PERTURBATIONS[J]. Journal of Applied Analysis & Computation, 2026, 16(1): 173-187. doi: 10.11948/20240522
Citation: Zouhair Diab, Feng Li, Meilan Cai. ON THE PERIODIC ORBITS OF CONTINUOUS THIRD-ORDER DIFFERENTIAL EQUATION WITH PIECEWISE PERTURBATIONS[J]. Journal of Applied Analysis & Computation, 2026, 16(1): 173-187. doi: 10.11948/20240522

ON THE PERIODIC ORBITS OF CONTINUOUS THIRD-ORDER DIFFERENTIAL EQUATION WITH PIECEWISE PERTURBATIONS

  • In this paper, we study the sufficient conditions for the existence of periodic solutions of the following differential equation

    $ \begin{equation*} \dddot{x}=-\dot{x}+\varepsilon |\ddot{x}|-\varepsilon \left( \alpha x-\beta \dot{x}\right) ^{m}, \end{equation*} $

    where $ m $ is a natural number, and $ \alpha $, $ \beta $ and $ \varepsilon $ are real parameters with $ |\varepsilon|>0 $ being small. We apply the averaging method and the Melnikov function method respectively to study the periodic solutions of this type of differential equation. We also provide an example as an application.

    MSC: 34C29, 34C25, 37G15
  • 加载中
  • [1] F. Braun, L. P. C. da Cruz and J. Torregrosa, On the number of limit cycles in piecewise planar quadratic differential systems, Nonlinear Anal. Real World Appl., 2024, 79, 104124.

    Google Scholar

    [2] A. Buicǎ, J. P. Françoise and J. Llibre, Periodic solutions of nonlinear periodic differential systems with a small parameter, Commun. Pure Appl. Anal., 2007, 6(1), 103–111.

    Google Scholar

    [3] A. Gasull, G. Rondón and P. R. da Silva, On the number of limit cycles for piecewise polynomial holomorphic systems, SIAM J. Appl. Dyn. Syst., 2024, 23(3), 2593–2622.

    Google Scholar

    [4] Z. Guo and J. Llibre, Limit cycles of a class of discontinuous piecewise differential systems separated by the curve $y = x.n$ via averaging theory, Int. J. Bifurc. Chaos, 2022, 32(12), 2250187.

    $y = x.n$ via averaging theory" target="_blank">Google Scholar

    [5] M. Han, Bifurcation Theory of Limit Cycles, Oxford: Science Press Beijing, Beijing; Alpha Science International Ltd., 2017.

    Google Scholar

    [6] M. Han, On the maximum number of periodic solutions of piecewise smooth periodic equations by average method, J. Appl. Anal. Comput., 2017, 7(2), 788–794.

    Google Scholar

    [7] M. Han, V. G. Romanovski and X. Zhang, Equivalence of the Melnikov function method and the averaging method, Qual. Theory Dyn. Syst., 2016, 15(2), 471–479.

    Google Scholar

    [8] M. Han and L. Sheng, Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, J. Appl. Anal. Comput., 2015, 5, 809–815.

    Google Scholar

    [9] M. Han and Y. Xiong, Limit cycle bifurcations in a class of near-Hamiltonian systems with multiple parameters, Chaos Solitons Fractals, 2014, 68, 20–29.

    Google Scholar

    [10] H. Hu, Perturbation method for periodic solutions of nonlinear jerk equations, Physics Letters A, 2008, 372(23), 4205–4209.

    Google Scholar

    [11] S. Liu, M. Han and J. Li. Bifurcation methods of periodic orbits for piecewise smooth systems, J. Differ. Equ., 2021, 275, 204–233.

    Google Scholar

    [12] X. Liu and M. Han, Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems, Int. J. Bifur. Chaos, 2010, 5, 1379–1390.

    Google Scholar

    [13] J. Llibre, B. D. Lopes and J. R. de Moraes, Periodic solutions of continuous third-order differential equations with piecewise polynomial nonlinearities, Int. J. Bifurc. Chaos, 2020, 30(11), 2050158.

    Google Scholar

    [14] J. Llibre, D. D. Novaes and M. A. Teixeira, Higher order averaging theory for finding periodic solutions via Brouwer degree, Nonlinearity, 2014, 27(3), 563–583.

    Google Scholar

    [15] J. Llibre and T. Salhi, On the limit cycles of the piecewise differential systems formed by a linear focus or center and a quadratic weak focus or center, Chaos Solitons Fractals., 2022, 160, 112256.

    Google Scholar

    [16] N. G. Lloyd, Degree Theory, Cambridge Tracts in Mathematics Vol. $73$, 1978.

    Google Scholar

    [17] I. G. Malkin, On Poincaré's theory of periodic solutions, Akad. Nauk SSSR Prikl. Mat. Meh., 1949, 13, 633–646.

    Google Scholar

    [18] A. Mirzabeigy and A. Yildirim, Approximate periodic solution for nonlinear jerk equation as a third-order nonlinear equation via modified differential transform method, Engineering Computations, 2014, 31(4), 622–633.

    Google Scholar

    [19] M. Roseau, Vibrations Non Linéaires et Théorie de la Stabilité, Springer Tracts in Natural Philosophy, Springer-Verlag, Berlin/NY, 1966.

    Google Scholar

    [20] H. Tian and M. Han, Bifurcation of periodic orbits by perturbing high-dimensional piecewise smooth integrable systems, J. Diff. Eqs., 2017, 263(11), 7448–7474.

    Google Scholar

    [21] M. Wang, L. Huang and J. Wang, Limit cycles in discontinuous planar piecewise differential systems with multiple nonlinear switching curves, Qual. Theory Dyn. Syst., 2024, 23(4), 159.

    Google Scholar

Article Metrics

Article views(21) PDF downloads(14) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint