Citation: | Zouhair Diab, Feng Li, Meilan Cai. ON THE PERIODIC ORBITS OF CONTINUOUS THIRD-ORDER DIFFERENTIAL EQUATION WITH PIECEWISE PERTURBATIONS[J]. Journal of Applied Analysis & Computation, 2026, 16(1): 173-187. doi: 10.11948/20240522 |
In this paper, we study the sufficient conditions for the existence of periodic solutions of the following differential equation
$ \begin{equation*} \dddot{x}=-\dot{x}+\varepsilon |\ddot{x}|-\varepsilon \left( \alpha x-\beta \dot{x}\right) ^{m}, \end{equation*} $
where $ m $ is a natural number, and $ \alpha $, $ \beta $ and $ \varepsilon $ are real parameters with $ |\varepsilon|>0 $ being small. We apply the averaging method and the Melnikov function method respectively to study the periodic solutions of this type of differential equation. We also provide an example as an application.
[1] | F. Braun, L. P. C. da Cruz and J. Torregrosa, On the number of limit cycles in piecewise planar quadratic differential systems, Nonlinear Anal. Real World Appl., 2024, 79, 104124. |
[2] | A. Buicǎ, J. P. Françoise and J. Llibre, Periodic solutions of nonlinear periodic differential systems with a small parameter, Commun. Pure Appl. Anal., 2007, 6(1), 103–111. |
[3] | A. Gasull, G. Rondón and P. R. da Silva, On the number of limit cycles for piecewise polynomial holomorphic systems, SIAM J. Appl. Dyn. Syst., 2024, 23(3), 2593–2622. |
[4] |
Z. Guo and J. Llibre, Limit cycles of a class of discontinuous piecewise differential systems separated by the curve $y = x.n$ via averaging theory, Int. J. Bifurc. Chaos, 2022, 32(12), 2250187.
$y = x.n$ via averaging theory" target="_blank">Google Scholar |
[5] | M. Han, Bifurcation Theory of Limit Cycles, Oxford: Science Press Beijing, Beijing; Alpha Science International Ltd., 2017. |
[6] | M. Han, On the maximum number of periodic solutions of piecewise smooth periodic equations by average method, J. Appl. Anal. Comput., 2017, 7(2), 788–794. |
[7] | M. Han, V. G. Romanovski and X. Zhang, Equivalence of the Melnikov function method and the averaging method, Qual. Theory Dyn. Syst., 2016, 15(2), 471–479. |
[8] | M. Han and L. Sheng, Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, J. Appl. Anal. Comput., 2015, 5, 809–815. |
[9] | M. Han and Y. Xiong, Limit cycle bifurcations in a class of near-Hamiltonian systems with multiple parameters, Chaos Solitons Fractals, 2014, 68, 20–29. |
[10] | H. Hu, Perturbation method for periodic solutions of nonlinear jerk equations, Physics Letters A, 2008, 372(23), 4205–4209. |
[11] | S. Liu, M. Han and J. Li. Bifurcation methods of periodic orbits for piecewise smooth systems, J. Differ. Equ., 2021, 275, 204–233. |
[12] | X. Liu and M. Han, Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems, Int. J. Bifur. Chaos, 2010, 5, 1379–1390. |
[13] | J. Llibre, B. D. Lopes and J. R. de Moraes, Periodic solutions of continuous third-order differential equations with piecewise polynomial nonlinearities, Int. J. Bifurc. Chaos, 2020, 30(11), 2050158. |
[14] | J. Llibre, D. D. Novaes and M. A. Teixeira, Higher order averaging theory for finding periodic solutions via Brouwer degree, Nonlinearity, 2014, 27(3), 563–583. |
[15] | J. Llibre and T. Salhi, On the limit cycles of the piecewise differential systems formed by a linear focus or center and a quadratic weak focus or center, Chaos Solitons Fractals., 2022, 160, 112256. |
[16] | N. G. Lloyd, Degree Theory, Cambridge Tracts in Mathematics Vol. $73$, 1978. |
[17] | I. G. Malkin, On Poincaré's theory of periodic solutions, Akad. Nauk SSSR Prikl. Mat. Meh., 1949, 13, 633–646. |
[18] | A. Mirzabeigy and A. Yildirim, Approximate periodic solution for nonlinear jerk equation as a third-order nonlinear equation via modified differential transform method, Engineering Computations, 2014, 31(4), 622–633. |
[19] | M. Roseau, Vibrations Non Linéaires et Théorie de la Stabilité, Springer Tracts in Natural Philosophy, Springer-Verlag, Berlin/NY, 1966. |
[20] | H. Tian and M. Han, Bifurcation of periodic orbits by perturbing high-dimensional piecewise smooth integrable systems, J. Diff. Eqs., 2017, 263(11), 7448–7474. |
[21] | M. Wang, L. Huang and J. Wang, Limit cycles in discontinuous planar piecewise differential systems with multiple nonlinear switching curves, Qual. Theory Dyn. Syst., 2024, 23(4), 159. |