Citation: | Wuxin Liu, Jing Zhang. VARIATION INEQUALITIES FOR THE COMMUTATORS OF APPROXIMATE IDENTITIES WITH LIPSCHITZ FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2026, 16(1): 155-172. doi: 10.11948/20250103 |
This paper is devoted to establishing the boundedness of the variation operators for commutators generated by approximate identities with Lipschitz functions in the weighted Lebesgue spaces and the endpoint spaces. As applications, we obtain the corresponding boundedness results for $ \lambda $-jump operator, the number of up-crossing, heat semigroups, Poisson semigroups and maximal operator.
[1] | A. Barbagallo and M. A. Ragusa, Preface of “The 2nd symposium on variational inequalities and equilibrium problems”, AIP Conf. Proc., 2010, 1281(1), 259–260. |
[2] | J. J. Betancor and M. De León-Contreras, Variation inequalities for Riesz transforms and Poisson semigroups associated with Laguerre polynomial expansions, Anal. Appl., 2024, 26(1), 1–52. |
[3] | J. J. Betancor, J. C. Fariña, E. Harboure and L. Rodríguez-Mesa, Lp-boundedness properties of variation operators in the Schrödinger setting, Rev. Mat. Complut., 2013, 26(2), 485–534. |
[4] | J. Bourgain, Pointwise ergodic theorems for arithmetic sets, Publ. Math. Inst. Hautes Études Sci., 1989, 69(1), 5–45. |
[5] | J. T. Campbell, R. L. Jones, K. Reinhold and M. Wierdl, Oscillations and variation for the Hilbert transform, Duke Math. J., 2000, 105(1), 59–83. |
[6] | J. T. Campbell, R. L. Jones, K. Reinhold and M. Wierdl, Oscillations and variation for singular integrals in higher dimensions, Trans. Amer. Math. Soc., 2003, 355(5), 2115–2137. |
[7] | S. Chen, H. Wu and Q. Xue, A note on multilinear Muckenhoupt classes for multiple weights, Studia Math., 2014, 223(1), 1–18. |
[8] | Y. Chen, L. Yang and M. Qu, Weighted norm inequalities for jump and variation of some singular integral operators with rough kernel, Internat. J. Math., 2025, 36(5), 2450088. |
[9] | J. García-Cuerva, Weighted Hp Space, Instytut Matematyczny Polskiej Akademi Nauk, Warszawa, 1979. |
[10] |
S. Demir, Variation and $\lambda$-jump inequalities on Hp Spaces, Russian Math., 2024, 68(4), 12–16.
$\lambda$-jump inequalities on Hp Spaces" target="_blank">Google Scholar |
[11] | X. T. Duong, J. Li and D. Yang, Variation of Calderón-Zygmund operators with matrix weight, Commun. Contemp. Math., 2021, 23(7), 2050062. |
[12] | M. Eslamian, Variational inequality problem over the solution set of split monotone variational inclusion problem with application to bilevel programming problem, Filomat, 2024, 37(24), 8361–8376. |
[13] | U. A. Ezeafulukwe, G. B. Akuchu, S. Etemad, A. E. Ofem, G. C. Ugwunnadi and Z. M. Yaseen, On the monotone variational inclusion problems: A new algorithm-based modiffed splitting approach, J. Funct. Spaces, 2025, 2025(1), 7233178. |
[14] | C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math., 1972, 129(1), 137–193. |
[15] | W. Guo, Y. Wen, H. Wu and D. Yang, Variational characterizations of weighted Hardy spaces and weighted BMO spaces, Proc. Roy. Soc. Edinburgh Sect. A, 2022, 152(6), 1613–1632. |
[16] | R. L. Jones, Variation inequalities for singular integrals and related operators, Contemp. Math., 2006, 411, 89–121. |
[17] | D. Lépingle, La variation d'order $p$ des semi-martingales, Z. Wahrsch. Verw. Geb., 1976, 36(4), 295–316. |
[18] | F. Liu and H. Wu, A criterion on oscillation and variation for the commutators of singular integral operators, Forum Math., 2015, 27(1), 77–97. |
[19] | H. Liu, Variational characterization of Hp, Proc. Roy. Soc. Edinburgh Sect. A, 2019, 149(5), 1123–1134. |
[20] | B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 1972, 165, 207–226. |
[21] | B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the fractional integrals, Trans. Amer. Math. Soc., 1974, 192, 261–274. |
[22] | Z. Si and L. Wang, Weighted inequalities for commutators associated with multilinear maximal square functions, Front. Math., 2023, 18(6), 1315–1330. |
[23] | E. Stein and T. S. Murphy, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ., 1993. |
[24] | Y. Wen and X. Hou, The boundedness of variation associated with the commutators of approximate identities, J. Inequal. Appl., 2021, 2021(1), 140. |
[25] | G. Wu, L. Tang and L. Yang, Weighted estimates for pseudo-differential operators with weak regular symbols and their commutators, J. Pseudo-Differ. Oper. Appl., 2025, 16(1), 7. |
[26] | H. Wu, D. Yang and J. Zhang, Oscillation and variation for semigroups associated with Bessel operators, J. Math. Anal. Appl., 2016, 443(2), 848–867. |
[27] | H. Wu, D. Yang and J. Zhang, Oscillation and variation for the Riesz transform associated with Bessel operators, Proc. Roy. Soc. Edinburgh Sect. A, 2019, 149(1), 169–190. |
[28] | J. Zhang and H. Wu, Oscillation and variation inequalities for the commutators of singular integrals with Lipschitz functions, J. Inequal. Appl., 2015, 2015(1), 214. |