2025 Volume 15 Issue 5
Article Contents

Wenjun Yu, Hailong Shen, Xinhui Shao. A CLASS OF COORDINATE DESCENT METHODS WITH ANGLE PROBABILITY FOR SOLVING LINEAR SYSTEMS[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2935-2958. doi: 10.11948/20240569
Citation: Wenjun Yu, Hailong Shen, Xinhui Shao. A CLASS OF COORDINATE DESCENT METHODS WITH ANGLE PROBABILITY FOR SOLVING LINEAR SYSTEMS[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2935-2958. doi: 10.11948/20240569

A CLASS OF COORDINATE DESCENT METHODS WITH ANGLE PROBABILITY FOR SOLVING LINEAR SYSTEMS

  • In order to resolve large-scale linear systems, we construct the new probability criterion based on the angle between hyperplanes and propose the randomized coordinate descent method with the angle probability criterion. Furthermore, we propose the randomized extended coordinate descent method with the angle probability criterion, which allows to solve underdetermined linear systems. The convergence properties of the two methods are analyzed from the expectation perspective and upper bounds on their convergence rate are derived when the matrix is full rank. Lastly, we conduct numerical experiments to verify the efficacy of our new methods.

    MSC: 65F10, 65K05, 68W20
  • 加载中
  • [1] Z. -Z. Bai, L. Wang and W. -T. Wu, On convergence rate of the randomized gauss-seidel method, Linear Algebra and its Applications, 2021, 611, 237-252. doi: 10.1016/j.laa.2020.10.028

    CrossRef Google Scholar

    [2] Z. -Z. Bai and W. -T. Wu, On greedy randomized kaczmarz method for solving large sparse linear systems, SIAM Journal on Scientific Computing, 2018, 40(1), A592-A606. doi: 10.1137/17M1137747

    CrossRef Google Scholar

    [3] Z. -Z. Bai and W. -T. Wu, On greedy randomized coordinate descent methods for solving large linear least-squares problems, Numerical Linear Algebra with Applications, 2019, 26(4), e2237. doi: 10.1002/nla.2237

    CrossRef Google Scholar

    [4] P. Breheny and J. Huang, Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection, The Annals of Applied Statistics, 2011, 5(1), 232.

    Google Scholar

    [5] T. A. Davis and Y. Hu, The university of florida sparse matrix collection, ACM Transactions on Mathematical Software (TOMS), 2011, 38(1), 1-25.

    Google Scholar

    [6] K. Du, Tight upper bounds for the convergence of the randomized extended kaczmarz and gauss-seidel algorithms, Numerical Linear Algebra with Applications, 2019, 26(3), e2233. doi: 10.1002/nla.2233

    CrossRef Google Scholar

    [7] K. Du and X. -H. Sun, A doubly stochastic block gauss-seidel algorithm for solving linear equations, Applied Mathematics and Computation, 2021, 408, 126373. doi: 10.1016/j.amc.2021.126373

    CrossRef Google Scholar

    [8] Y. -J. Guan, W. -G. Li, L. -L. Xing and T. -T. Qiao, A note on convergence rate of randomized kaczmarz method, Calcolo, 2020, 57, 1-11. doi: 10.1007/s10092-019-0350-3

    CrossRef Google Scholar

    [9] D. Leventhal and A. S. Lewis, Randomized methods for linear constraints: Convergence rates and conditioning, Mathematics of Operations Research, 2010, 35(3), 641-654. doi: 10.1287/moor.1100.0456

    CrossRef Google Scholar

    [10] Y. Liu, X. -L. Jiang and C. -Q. Gu, On maximum residual block and two-step gauss-seidel algorithms for linear least-squares problems, Calcolo, 2021, 58, 1-32. doi: 10.1007/s10092-020-00392-4

    CrossRef Google Scholar

    [11] Z. Lu and L. Xiao, On the complexity analysis of randomized block-coordinate descent methods, Mathematical Programming, 2015, 152, 615-642. doi: 10.1007/s10107-014-0800-2

    CrossRef Google Scholar

    [12] A. Ma, D. Needell and A. Ramdas, Convergence properties of the randomized extended gauss-seidel and kaczmarz methods, SIAM Journal on Matrix Analysis and Applications, 2015, 36(4), 1590-1604. doi: 10.1137/15M1014425

    CrossRef Google Scholar

    [13] I. Necoara, A random coordinate descent method for large-scale resource allocation problems, in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), IEEE, 2012, 4474-4479.

    Google Scholar

    [14] Y. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems, SIAM Journal on Optimization, 2012, 22(2), 341-362. doi: 10.1137/100802001

    CrossRef Google Scholar

    [15] Y. -Q. Niu and B. Zheng, A new randomized gauss-seidel method for solving linear least-squares problems, Applied Mathematics Letters, 2021, 116, 107057. doi: 10.1016/j.aml.2021.107057

    CrossRef Google Scholar

    [16] Y. -Q. Niu and B. Zheng, A randomized sparse kaczmarz solver for sparse signal recovery via minimax-concave penalty, Mathematical Methods in the Applied Sciences, 2024, 47, 6431-6445. doi: 10.1002/mma.9927

    CrossRef Google Scholar

    [17] P. Richtárik and M. Takáč, Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function, Mathematical Programming, 2014, 144(1), 1-38.

    Google Scholar

    [18] A. Rodomanov and D. Kropotov, A randomized coordinate descent method with volume sampling, SIAM Journal on Optimization, 2020, 30(3), 1878-1904. doi: 10.1137/19M125532X

    CrossRef Google Scholar

    [19] J. M. Steele, The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities, Cambridge University Press, 2004.

    Google Scholar

    [20] T. Strohmer and R. Vershynin, A randomized kaczmarz algorithm with exponential convergence, Journal of Fourier Analysis and Applications, 2009, 15(2), 262-278. doi: 10.1007/s00041-008-9030-4

    CrossRef Google Scholar

    [21] L. -Z. Tan and X. -P. Guo, On multi-step greedy randomized coordinate descent method for solving large linear least-squares problems, Computational and Applied Mathematics, 2023, 42(1), 37. doi: 10.1007/s40314-022-02163-z

    CrossRef Google Scholar

    [22] N. Wu and H. Xiang, On the generally randomized extended gauss-seidel method, Applied Numerical Mathematics, 2022, 172, 382-392. doi: 10.1016/j.apnum.2021.10.018

    CrossRef Google Scholar

    [23] Q. Wu, M. Li, J. Zhu, et al., Dp-rbadabound: A differentially private randomized block-coordinate adaptive gradient algorithm for training deep neural networks, Expert Systems with Applications, 2023, 211, 118574. doi: 10.1016/j.eswa.2022.118574

    CrossRef Google Scholar

    [24] W. Wu, Convergence of the randomized block gauss-seidel method, SIAM Undergraduate Research Online, 2018, 11, 369-382.

    Google Scholar

    [25] J. Zhang and J. Guo, On relaxed greedy randomized coordinate descent methods for solving large linear least-squares problems, Applied Numerical Mathematics, 2020, 157, 372-384. doi: 10.1016/j.apnum.2020.06.014

    CrossRef Google Scholar

    [26] A. Zouzias and N. M. Freris, Randomized extended kaczmarz for solving least squares, SIAM Journal on Matrix Analysis and Applications, 2013, 34(2), 773-793. doi: 10.1137/120889897

    CrossRef Google Scholar

Figures(6)  /  Tables(16)

Article Metrics

Article views(39) PDF downloads(8) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint