2025 Volume 15 Issue 5
Article Contents

Mudong Li, Pengyu Chen. UNIFORM LARGE DEVIATION PRINCIPLES OF FRACTIONAL STOCHASTIC P-LAPLACIAN REACTION-DIFFUSION EQUATIONS ON UNBOUNDED DOMAINS[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 3095-3112. doi: 10.11948/20240585
Citation: Mudong Li, Pengyu Chen. UNIFORM LARGE DEVIATION PRINCIPLES OF FRACTIONAL STOCHASTIC P-LAPLACIAN REACTION-DIFFUSION EQUATIONS ON UNBOUNDED DOMAINS[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 3095-3112. doi: 10.11948/20240585

UNIFORM LARGE DEVIATION PRINCIPLES OF FRACTIONAL STOCHASTIC P-LAPLACIAN REACTION-DIFFUSION EQUATIONS ON UNBOUNDED DOMAINS

  • Author Bio: Email: 1281579589@qq.com(M. Li)
  • Corresponding author: Email: chpengyu123@163.com(P. Chen)
  • Fund Project: This work was supported by National Natural Science Foundation of China (No. 12471231), the Outstanding Youth Science Fund of Gansu Province (No. 24JRRA122), Funds for Innovative Fundamental Research Group Project of Gansu Province (No. 23JRRA684) and Project of NWNU-LKZD2023-03
  • This paper is concerned with uniform large deviation principles of fractional stochastic p-Laplacian reaction-diffusion equations driven by additive noise defined on unbounded domains. The nonlinear drift is assumed to be locally Lipschitz continuous. Due to the non-compact of the solution operator, we will use the method of weak convergence to show the result.

    MSC: 60F10, 60H15, 35R11, 37L55
  • 加载中
  • [1] T. Caraballo, M. Herrera-Cobos and Marín-Rubio, Pedro global attractor for a nonlocal p-Laplacian equation without uniqueness of solution, Discrete Contin. Dyn. Syst. Ser. B, 2017, 22(5), 1801–1816.

    Google Scholar

    [2] P. Chen, R. Wang and X. Zhang, Long-time dynamics of fractional nonclassical diffusion equations with nonlinear colored noise and delay on unbounded domains, Bull. Sci. Math., 2021, 173, 103071. doi: 10.1016/j.bulsci.2021.103071

    CrossRef Google Scholar

    [3] P. Chen and X. Zhang, Existence of attractors for stochastic diffusion equations with fractional damping and time-varying delay, J. Math. Phys., 2021, 62(2).

    Google Scholar

    [4] P. Chen, X. Zhang and X. Zhang, Asymptotic behavior of non-autonomous fractional stochastic p-Laplacian equations with delay on $\mathbb{R}^n$, J. Dynam. Differ. Equ., 2023, 35(4), 3459–3485. doi: 10.1007/s10884-021-10076-4

    CrossRef $\mathbb{R}^n$" target="_blank">Google Scholar

    [5] Z. Chen and D. Yang, Invariant measures and stochastic Liouville type theorem for non-autonomous stochastic reaction-diffusion equations, J. Differential Equations, 2023, 353, 225–267. doi: 10.1016/j.jde.2022.12.030

    CrossRef Google Scholar

    [6] Z. Chen, D. Yang and S. Zhong, Large deviation principle for stochastic FitzHugh–Nagumo lattice systems, Commun. Nonlinear Sci. Numer. Simul., 2024, 136, 108070. doi: 10.1016/j.cnsns.2024.108070

    CrossRef Google Scholar

    [7] P. Dupuis and A. Budhiraja, A variational representation for positive functionals of infinite dimensional Brownian motion, Probab. Math. Statist., 2000, 20, 39–61.

    Google Scholar

    [8] P. Dupuis and R. S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations, Wiley-Interscience, New York, 1997.

    Google Scholar

    [9] M. M. José, D. R. Julio and T. Julián, Fractional p-Laplacian evolution equations, J. Math. Pure. Appl., 2016, 105, 810–844. doi: 10.1016/j.matpur.2016.02.004

    CrossRef Google Scholar

    [10] E. D. Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 2012, 136(5), 521–573. doi: 10.1016/j.bulsci.2011.12.004

    CrossRef Google Scholar

    [11] Z. Qiu, The ergodicity and uniform large deviations for the 1D stochastic Landau-Lifshitz-Bloch equation, Stoch. Anal. Appl., 2024, 42(5), 963–985. doi: 10.1080/07362994.2024.2399081

    CrossRef Google Scholar

    [12] Z. Qiu and H. Wang, Large deviation principle for the 2D stochastic Cahn-Hilliard-Navier-Stokes equations, Z. Angew. Math. Phys., 2020, 71, 88. doi: 10.1007/s00033-020-01312-w

    CrossRef Google Scholar

    [13] B. Wang, Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise, J. Differential Equations, 2019, 268(1), 1–59. doi: 10.1016/j.jde.2019.08.007

    CrossRef Google Scholar

    [14] B. Wang, Uniform large deviation principles of fractional stochastic reaction-diffusion equations on unbounded domains, Discrete Contin. Dyn. Syst. Ser., 2023, 16(10), 2765–2782. doi: 10.3934/dcdss.2023020

    CrossRef Google Scholar

    [15] B. Wang, Large deviations of fractional stochastic equations with non-Lipschitz drift and multiplicative noise on unbounded domains, J. Differential Equations, 2023, 376, 1–38. doi: 10.1016/j.jde.2023.08.026

    CrossRef Google Scholar

    [16] B. Wang and R. Wang, Asymptotic behavior of non-autonomous fractional stochastic p-Laplacian equations, Appl. Math. Comput., 2019, 78(11), 3527–3543. doi: 10.1016/j.camwa.2019.05.024

    CrossRef Google Scholar

    [17] M. Warma, Local Lipschitz continuity of the inverse of the fractional p-Laplacian, Hölder type continuity and continuous dependence of solutions to associated parabolic equations on bounded domains, Nonlinear Anal., 2016, 135, 129–157. doi: 10.1016/j.na.2016.01.022

    CrossRef Google Scholar

    [18] J. Xu, T. Caraballo and J. Valero, Dynamics and large deviations for fractional stochastic partial differential equations with Lévy noise, SIAM J. Math. Anal., 2024, 56(1), 1016–1067. doi: 10.1137/22M1544440

    CrossRef Google Scholar

Article Metrics

Article views(33) PDF downloads(17) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint