Citation: | Mudong Li, Pengyu Chen. UNIFORM LARGE DEVIATION PRINCIPLES OF FRACTIONAL STOCHASTIC P-LAPLACIAN REACTION-DIFFUSION EQUATIONS ON UNBOUNDED DOMAINS[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 3095-3112. doi: 10.11948/20240585 |
This paper is concerned with uniform large deviation principles of fractional stochastic p-Laplacian reaction-diffusion equations driven by additive noise defined on unbounded domains. The nonlinear drift is assumed to be locally Lipschitz continuous. Due to the non-compact of the solution operator, we will use the method of weak convergence to show the result.
[1] | T. Caraballo, M. Herrera-Cobos and Marín-Rubio, Pedro global attractor for a nonlocal p-Laplacian equation without uniqueness of solution, Discrete Contin. Dyn. Syst. Ser. B, 2017, 22(5), 1801–1816. |
[2] | P. Chen, R. Wang and X. Zhang, Long-time dynamics of fractional nonclassical diffusion equations with nonlinear colored noise and delay on unbounded domains, Bull. Sci. Math., 2021, 173, 103071. doi: 10.1016/j.bulsci.2021.103071 |
[3] | P. Chen and X. Zhang, Existence of attractors for stochastic diffusion equations with fractional damping and time-varying delay, J. Math. Phys., 2021, 62(2). |
[4] | P. Chen, X. Zhang and X. Zhang, Asymptotic behavior of non-autonomous fractional stochastic p-Laplacian equations with delay on $\mathbb{R}^n$, J. Dynam. Differ. Equ., 2023, 35(4), 3459–3485. doi: 10.1007/s10884-021-10076-4 |
[5] | Z. Chen and D. Yang, Invariant measures and stochastic Liouville type theorem for non-autonomous stochastic reaction-diffusion equations, J. Differential Equations, 2023, 353, 225–267. doi: 10.1016/j.jde.2022.12.030 |
[6] | Z. Chen, D. Yang and S. Zhong, Large deviation principle for stochastic FitzHugh–Nagumo lattice systems, Commun. Nonlinear Sci. Numer. Simul., 2024, 136, 108070. doi: 10.1016/j.cnsns.2024.108070 |
[7] | P. Dupuis and A. Budhiraja, A variational representation for positive functionals of infinite dimensional Brownian motion, Probab. Math. Statist., 2000, 20, 39–61. |
[8] | P. Dupuis and R. S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations, Wiley-Interscience, New York, 1997. |
[9] | M. M. José, D. R. Julio and T. Julián, Fractional p-Laplacian evolution equations, J. Math. Pure. Appl., 2016, 105, 810–844. doi: 10.1016/j.matpur.2016.02.004 |
[10] | E. D. Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 2012, 136(5), 521–573. doi: 10.1016/j.bulsci.2011.12.004 |
[11] | Z. Qiu, The ergodicity and uniform large deviations for the 1D stochastic Landau-Lifshitz-Bloch equation, Stoch. Anal. Appl., 2024, 42(5), 963–985. doi: 10.1080/07362994.2024.2399081 |
[12] | Z. Qiu and H. Wang, Large deviation principle for the 2D stochastic Cahn-Hilliard-Navier-Stokes equations, Z. Angew. Math. Phys., 2020, 71, 88. doi: 10.1007/s00033-020-01312-w |
[13] | B. Wang, Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise, J. Differential Equations, 2019, 268(1), 1–59. doi: 10.1016/j.jde.2019.08.007 |
[14] | B. Wang, Uniform large deviation principles of fractional stochastic reaction-diffusion equations on unbounded domains, Discrete Contin. Dyn. Syst. Ser., 2023, 16(10), 2765–2782. doi: 10.3934/dcdss.2023020 |
[15] | B. Wang, Large deviations of fractional stochastic equations with non-Lipschitz drift and multiplicative noise on unbounded domains, J. Differential Equations, 2023, 376, 1–38. doi: 10.1016/j.jde.2023.08.026 |
[16] | B. Wang and R. Wang, Asymptotic behavior of non-autonomous fractional stochastic p-Laplacian equations, Appl. Math. Comput., 2019, 78(11), 3527–3543. doi: 10.1016/j.camwa.2019.05.024 |
[17] | M. Warma, Local Lipschitz continuity of the inverse of the fractional p-Laplacian, Hölder type continuity and continuous dependence of solutions to associated parabolic equations on bounded domains, Nonlinear Anal., 2016, 135, 129–157. doi: 10.1016/j.na.2016.01.022 |
[18] | J. Xu, T. Caraballo and J. Valero, Dynamics and large deviations for fractional stochastic partial differential equations with Lévy noise, SIAM J. Math. Anal., 2024, 56(1), 1016–1067. doi: 10.1137/22M1544440 |