Citation: | Mensure Şen, Yasin Yazlik, Merve Kara. ON A SYSTEM OF DIFFERENCE EQUATIONS DEFINED BY THE CONTINUOUS AND STRICTLY MONOTONE FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3690-3703. doi: 10.11948/20250012 |
In this paper, we solve the following difference equations system
$ \begin{align*} \begin{cases} \omega_{n+1}=g^{-1}\left( g\left( \omega_{n}\right) \dfrac{\zeta_{1}h\left( \vartheta_{n}\right)+\eta_{1}h\left( \vartheta_{n-1}\right) }{\mu_{1}h\left( \vartheta_{n}\right)+\xi_{1}h\left( \vartheta_{n-1}\right)}\right), \\ \vartheta_{n+1}=h^{-1}\left( h\left( \vartheta_{n}\right) \dfrac{\zeta_{2}g\left( \omega_{n}\right)+\eta_{2}g\left( \omega_{n-1}\right) }{\mu_{2}g\left( \omega_{n}\right)+\xi_{2}g\left( \omega_{n-1}\right)}\right) , \end{cases} n\in \mathbb{N}_{0}, \end{align*} $
where the coefficients $ \mu_{k}^2+\xi_{k}^2\neq0 $, $ \zeta_{k} $, $ \eta_{k} $, $ \mu_{k} $, $ \xi_{k} $, for $ k\in\{1,2\} $ are real numbers, the initial values $ \omega_{-j} $, $ \vartheta_{-j} $, for $ j\in\{0,1\} $ are real numbers, $ g $ and $ h $ are continuous and strictly monotone functions, $ g\left( \mathbb{R}\right) =\mathbb{R} $, $ h\left( \mathbb{R}\right) =\mathbb{R} $, $ g\left( 0\right) =0 $, $ h\left( 0\right) =0 $, in explicit form depending on whether or not the parameters are equal to $ 0 $.
[1] | Y. Akrour, M. Kara, N. Touafek and Y. Yazlik, Solutions formulas for some general systems of difference equations, Miskolc Math. Notes., 2021, 22(2), 529–555. doi: 10.18514/MMN.2021.3365 |
[2] | S. Atpinar and Y. Yazlik, Qualitative behavior of exponential type of fuzzy difference equations system, J. Appl. Math. Comput., 2023, 69, 4135–4162. doi: 10.1007/s12190-023-01919-y |
[3] | S. Elaydi, An Introduction to Difference Equations, Springer, New York, 1996. |
[4] | E. M. Elsayed, Qualitative behavior of difference equation of order two, Math. Comput. Model., 2009, 50(7–8), 1130–1141. |
[5] | E. M. Elsayed, B. S. Aloufi and O. Moaaz, The behavior and structures of solution of fifth-order rational recursive sequence, Symmetry, 2022, 14, 641. DOI: 10.3390/sym14040641. |
[6] | E. M. Elsayed, F. Alzahrani, I. Abbas and N. H. Alotaibi, Dynamical behavior and solution of nonlinear difference equation via Fibonacci sequence, J. Appl. Anal. Comput., 2020, 10, 282–296. |
[7] | A. Ghezal, Note on a rational system of $(4k+4)-$order difference equations: Periodic solution and convergence, J. Appl. Math. Comput., 2023, 69(2), 2207–2215. doi: 10.1007/s12190-022-01830-y |
[8] | M. Gumus and R. Abo-Zeid, Qualitative study of a third order rational system of difference equations, Math. Morav., 2021, 25(1), 81–97. doi: 10.5937/MatMor2101081G |
[9] | Y. Halim, N. Touafek and Y. Yazlik, Dynamic behavior of a second-order nonlinear rational difference equation, Turkish J. Math., 2015, 39(6), 1004–1018. |
[10] | M. Kara, On a general non-linear difference equation of third-order, Turk. J. Math. Comput. Sci., 2024, 16(1), 126–136. doi: 10.47000/tjmcs.1366596 |
[11] | M. Kara and Y. Yazlik, Solvability of a nonlinear three-dimensional system of difference equations with constant coefficients, Math. Slovaca., 2021, 71(5), 1133–1148. doi: 10.1515/ms-2021-0044 |
[12] | M. Kara and Y. Yazlik, On eight solvable systems of difference equations in terms of generalized Padovan sequences, Miskolc Math. Notes., 2021, 22(2), 695–708. doi: 10.18514/MMN.2021.3234 |
[13] | M. Kara and Y. Yazlik, On a solvable system of difference equations via some number sequences, Int. J. Nonlinear Anal. Appl., 13(2), 2611–2637. |
[14] | M. Kara and Y. Yazlik, On a class of difference equations system of fifth-order, Fundam. J. Math. Appl., 2024, 7(3), 186–202. doi: 10.33401/fujma.1492703 |
[15] | A. De Moivre, The Doctrine of Chances, 3. nd Edition, in Landmark Writings in Western Mathematics, London, 1756. |
[16] | S. Stevi, M. A. Alghamdi, N. Shahzad and D. A. Maturi, On a class of solvable difference equations, Abstr. Appl. Anal., 2013, Article ID 157943, 7 pp. DOI: 10.1155/2013/157943. |
[17] | S. Stevi, B. Iričanin and W. Kosmala, On a family of nonlinear difference equations of the fifth order solvable in closed form, AIMS Math., 2023, 8(10), 22662–22674. doi: 10.3934/math.20231153 |
[18] | S. Stevi, B. Iričanin, W. Kosmala and Z. Smarda, On a nonlinear second-order difference equation, J. Inequal. Appl., 2022, 88, 1–11. |
[19] | N. Taskara, D. T. Tollu, N. Touafek and Y. Yazlik, A solvable system of difference equations, Commun. Korean Math. Soc., 2020, 35(1), 301–319. |
[20] | D. T. Tollu, Y. Yazlik and N. Taskara, Behavior of positive solutions of a difference equation, J. Appl. Math. Inform., 2017, 35, 217–230. doi: 10.14317/jami.2017.217 |
[21] | D. T. Tollu, Y. Yazlik and N. Taskara, On a solvable nonlinear difference equation of higher order, Turkish J. Math., 2018, 42, 1765–1778. doi: 10.3906/mat-1705-33 |
[22] | N. Touafek, On a general system of difference equations defined by homogeneous functions, Math. Slovaca., 2021, 71(3), 697–720. doi: 10.1515/ms-2021-0014 |
[23] | I. Yalcinkaya, H. Ahmad, D. T. Tollu and Y. Li, On a system of k-difference equations of order three, Math. Probl. Eng., 2020, Article ID 6638700, 11 pp. DOI: 10.1155/2020/6638700. |
[24] | Y. Yazlik and M. Kara, On a solvable system of difference equations of higher-order with period two coefficients, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 2019, 68(2), 1675–1693. |
[25] | Y. Yazlik, D. T. Tollu and N. Taskara, On the solutions of difference equation systems with Padovan numbers, Appl. Math., 2013, 4(12A), 15–20. |
[26] | R. Abo-Zeid, Behavior of solutions of a second order rational difference equation, Math. Morav., 2019, 23(1), 11–25. |