Citation: | Guangwei Du, Fushan Li, Yuying Zheng. LIOUVILLE THEOREM FOR INDEFINITE FRACTIONAL PARABOLIC EQUATION INVOLVING PSEUDO-RELATIVISTIC SCHRÖDINGER OPERATORS[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3677-3689. doi: 10.11948/20250044 |
In this paper, we study the following indefinite fractional parabolic equation involving pseudo-relativistic Schrödinger operators
$\begin{equation*}\frac{\partial u}{\partial t}(x, t)+(-\Delta+m^2)^su(x, t)=a(x_1)f(u(x, t)), \ \ \mbox{in}\ { \mathbb R^N}\times\mathbb R, \end{equation*}$
where $0<s<1$ and the mass $m>0$. We first prove the monotonicity of positive bounded solutions by using the method of moving planes. Moreover, the nonexistence of positive bounded solutions is established.
[1] | D. Applebaum, Lévy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc., 2004, 51, 1336–1347. |
[2] | L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Diff. Equ., 2007, 32, 1245–1260. doi: 10.1080/03605300600987306 |
[3] | R. Carmona, W. C. Masters and B. Simon, Relativistic Schrödinger operators: Asymptotic behavior of the eigenfunctions, J. Funct. Anal., 1990, 91, 117–142. doi: 10.1016/0022-1236(90)90049-Q |
[4] | W. Chen and Y. Hu, Monotonicity of positive solutions for nonlocal problems in unbounded domains, J. Funct. Anal., 2021, 281(9), 109187. doi: 10.1016/j.jfa.2021.109187 |
[5] | W. Chen, C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 2017, 308, 404–437. doi: 10.1016/j.aim.2016.11.038 |
[6] | W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation, Disc. Contin. Dyn. Syst., 2005, 12, 347–354. |
[7] | W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 2006, 59, 330–343. doi: 10.1002/cpa.20116 |
[8] | W. Chen, C. Li and J. Zhu, Fractional equations with indefinite nonlinearities, Discrete Contin. Dyn. Syst., 2019, 39, 1257–1268. doi: 10.3934/dcds.2019054 |
[9] | W. Chen, L. Wu and P. Wang, Nonexistence of solutions for indefinite fractional parabolic equations, Adv. Math., 2021, 392, 108018. doi: 10.1016/j.aim.2021.108018 |
[10] | W. Chen and J. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differ. Equ., 2016, 260, 4758–4785. doi: 10.1016/j.jde.2015.11.029 |
[11] | X. Chen, G. Li and S. Bao, Symmetry and monotonicity of positive solutions for a class of general pseudo-relativistic systems, Commun. Pure Appl. Anal., 2022, 21, 1755–1772. doi: 10.3934/cpaa.2022045 |
[12] | R. Cont and P. Tankov, Financial Modeling with Jump Processes, Chapman Hall Financial Mathematics Series, Chapman Hall/CRC, Boca Raton, 2004. |
[13] | W. Dai, G. Qin and D. Wu, Direct methods for pseudo-relativistic Schrödinger operators, J Geom. Anal., 2021, 31, 5555–5618. doi: 10.1007/s12220-020-00492-1 |
[14] | A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, McGraw-Hill, New York, 1953. |
[15] | M. M. Fall and V. Felli, Unique continuation properties for relativistic Schrödinger operators with a singular potential, Disc. Contin. Dyn. Syst., 2015, 35, 5827–5867. doi: 10.3934/dcds.2015.35.5827 |
[16] | Y. Guo and S. Peng, Liouville-type results for positive solutions of pseudo-relativistic Schrödinger system, Proc. R. Soc. Edinb., Sect. A, Math., 2023, 153, 196–228. |
[17] | Y. Guo and S. Peng, Monotonicity and nonexistence of positive solutions for pseudo-relativistic equation with indefinite nonlinearity, Commun. Pure Appl. Anal., 2022, 21, 1637–1648. |
[18] | P. Poláik and P. Quittner, Liouville type theorems and complete blow-up for indefinite superlinear parabolic equations, in: Progress in Nonlinear Differential Equations and Their Application, Birkhäuser Basel, 2005, 64, 391–402. |
[19] | X. Fernández-Real and X. Ros-Oton, Regularity theory for general stable operators: Parabolic equations, J. Funct. Anal., 2017, 272, 4165–4221. |
[20] | M. Ryznar, Estimate of Green function for relativistic α-stable processes, Potential Anal., 2002, 17, 1–23. |
[21] | P. Wang, A Hopf type lemma for nonlocal pseudo-relativistic equations and its applications, Complex Var. Elliptic Equ., 2024, 69, 1224–1243. |
[22] | P. Wang and M. Cai, Maximum principles and Liouville theorems for fractional Kirchhoff equations, Sci. Asia, 2023, 49, 710–716. |