Citation: | Linlin Gui, Yufeng Zhang, Siqi Han. THE $ \bar{\partial} $-DRESSING METHOD FOR THE TWO-DIMENSIONAL HARRY DYM EQUATION[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3465-3479. doi: 10.11948/20250033 |
The (2+1)-dimensional Harry Dym (HD) equation is solved via the $ \bar{\partial} $-dressing method in this paper. By introducing long derivatives $ E_x $, $ E_y $ and $ E_t $ and new expressions for the kernel functions $ K $ of $ \bar{\partial} $-problem, a type of general solution of the HD equation is obtained. Under the reality of the solution $ u $ of the HD equation, several classes of exact explicit solutions of the HD equation, including the solutions with functional parameters, line solitons and rational solutions, are constructed by the $ \bar{\partial} $-dressing method.
[1] | M. J. Ablowitz and R. Haberman, Nonlinear evolution equations in two and three dimensions, Phys. Rev. Lett., 1975, 35, 1185–1188. doi: 10.1103/PhysRevLett.35.1185 |
[2] | M. J. Ablowitz and Z. H. Musslimani, Inverse scattering transform for the integrable nonlocal nonlinear Schrdinger equation, Nonlinearity, 2016, 29(3), 915–946. doi: 10.1088/0951-7715/29/3/915 |
[3] | M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, Philadelphia, PA: SIAM, 1981. |
[4] | M. R. Ali, M. A. Khattab and S. M. Mabrouk, Travelling wave solution for the Landau-Ginburg-Higgs model via the inverse scattering transformation method, Nonlinear. Dyn., 2023,111, 7687–7697. doi: 10.1007/s11071-022-08224-6 |
[5] | A. L. Balandin and A. Kaneko, Inverse scattering problem by the use of vortex Bessel beams, Z. Angew. Math. Phy., 2024. |
[6] | R. Beals and R. R. Coifman, Linear spectral problems, nonlinear equations and the $\bar{\partial}$-method, Inverse Prob., 1989, 5. |
[7] | R. Beals and R. R. Coifman, The D-bar approach to inverse scattering and nonlinear equations, Phys. D, 1986, 18,242–249. doi: 10.1016/0167-2789(86)90184-3 |
[8] | R. Beals and R. R. Coifman, Scattering, Transformations Spectrales et Equations D'Evolution Nonlineare, I. Seminaire Goulaouic-Meyer-Schwartz, Ecole Polytechnique, Palaiseau exp., 1981. |
[9] | R. Beals and R. R. Coifman, Scattering, Transformations Spectrales et Equations D'Evolution Nonlineare, II. Seminaire Goulaouic-Meyer-Schwartz, Ecole Polytechnique, Palaiseau exp., 1982. |
[10] |
L. V. Bogdanov and S. V. Manakov, Nonlocal $\bar{\partial}$-problem and (2+1)-dimensional soliton equations, J. Phys. A, 1988, 21, L537–L544. doi: 10.1088/0305-4470/21/10/001
CrossRef $\bar{\partial}$-problem and (2+1)-dimensional soliton equations" target="_blank">Google Scholar |
[11] | K. Chadan, D. Colton, L. Pivrinta and W. Rundell, An Introduction to Inverse Scattering and Inverse Spectral Problems, Soc. Ind. App. Math., 1987. |
[12] |
X. D. Chai, Y. F. Zhang, Y. Chen and S. Y. Zhao, The $\bar{\partial}$-dressing method for the (2+1)-dimensional Jimbo-Miwa equation, P. Am. Math. Soc., 2022,150, 2879–2887. doi: 10.1090/proc/15716
CrossRef $\bar{\partial}$-dressing method for the (2+1)-dimensional Jimbo-Miwa equation" target="_blank">Google Scholar |
[13] | A. Constantin, V. S. Gerdjikov and R. I. Ivanov, Inverse Scattering Transform for the Camassa-Holm Equation, Inverse Prob., 2006. |
[14] | A. Constantin, R. I. Ivanov and J. Lenells, Inverse Scattering Transform for the Degasperis-Procesi Equation, Nonlinearity, 2010. |
[15] | P. Deift and X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems, asymptotics for the MKdV equation, Annals of Mathematics, 1993,137,295–368. doi: 10.2307/2946540 |
[16] |
V. G. Dubrovsky, The construction of exact multiple pole solutions of some (2+1)-dimensional integrable nonlinear evolution equations via the $\bar{\partial}$-dressing method, J. Phys. A: Math. Gen., 1999, 32,369–390. doi: 10.1088/0305-4470/32/2/011
CrossRef $\bar{\partial}$-dressing method" target="_blank">Google Scholar |
[17] |
V. G. Dubrovsky, The application of the $\bar{\partial}$-dressing method to some integrable (2+1)-dimensional nonlinear equations, J. Phys. A, 1996, 29, 3617–3630. doi: 10.1088/0305-4470/29/13/027
CrossRef $\bar{\partial}$-dressing method to some integrable (2+1)-dimensional nonlinear equations" target="_blank">Google Scholar |
[18] |
V. G. Dubrovsky and Y. V. Lisitsyn, The construction of exact solutions of two-dimensional integrable generalizations of Kaup-Kuperschmidt and Sawada-Kotera equations via $\bar{\partial}$-dressing method, Phys. Lett. A, 2002,295,198–207. doi: 10.1016/S0375-9601(02)00154-8
CrossRef $\bar{\partial}$-dressing method" target="_blank">Google Scholar |
[19] | A. S. Fokas, Integrable nonlinear evolution equations in three spatial dimensions, Proc. R. Soc. A, 2022,478, 20220074. doi: 10.1098/rspa.2022.0074 |
[20] | A. S. Fokas and M. J. Ablowitz, Method of solution for a class of multidimensional nonlinear evolution equations, Phys. Rev. Lett., 1883, 51, 7–10. |
[21] | A. S. Fokas and M. J. Ablowitz, On the inverse scatering of the time dependent Schrödinger equation and the associated KPI equation, Stud. Appl. Math., 1983, 69,211–218. doi: 10.1002/sapm1983693211 |
[22] | C. S. Gardner, J. M. Green, M. D. Kruskal and R. M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett., 1967, 19, 1095–1097. doi: 10.1103/PhysRevLett.19.1095 |
[23] | S. M. Grudsky, V. V. Kravchenko and S. M. Torba, Realization of the Inverse Scattering Transform Method for the Korteweg-de Vries Equation, Math. Method. Appl. Sci., 2023. |
[24] | L. L. Gui and Y. F. Zhang, Conservation laws of some multi-component integrable systems, Mod. Phys. Lett. B, 2021, 35, 2150405. doi: 10.1142/S0217984921504054 |
[25] | B. G. Konopelchenko and V. G. Dubrovsky, Some new integrable nonlinear evolution equations in 2+1 dimensions, Phys. Lett. A, 1984,102(1–2), 15–17. doi: 10.1016/0375-9601(84)90442-0 |
[26] | B. G. Konopelchenko and V. G. Dubrovsky, Inverse spectral transform for the modified Kadomtsev-Petviashvili equation, Stud. Appl. Math., 1992, 86,219–268. doi: 10.1002/sapm1992863219 |
[27] |
C. Z. Li, $N=2$ supersymmetric extension on multi-component $D$ type Drinfeld-Sokolov hierarchy, Phys. Lett. B, 2024,855, 138771. doi: 10.1016/j.physletb.2024.138771
CrossRef $N=2$ supersymmetric extension on multi-component |
[28] | Q. Li, D. Y. Chen, J. B. Zhang and S. T. Chen, Solving the non-isospectral Ablowitz-Ladik hierarchy via the inverse scattering transform and reductions, Chaos Solitons Fractals, 2012, 45, 1479–1485. doi: 10.1016/j.chaos.2012.08.010 |
[29] | A. Shabat and V. Zakharov, Exact Theory of Two-Dimensional Self-Focusing and One-Dimensional Self-Modulation of Wave in Nonlinear Media, Sov. Phys. Jetp., 1972. |
[30] | D. Shepelsky, et al., Periodic finite-band solutions to the focusing nonlinear Schrödinger equation by the Fokas method: Inverse and direct problems, P. Roy. Soc. A, 2024,480, 20230828. |
[31] | M. Wadati, The modified Korteweg-de Vries equation, J. Phys. Soc. Jpn., 1973, 34, 1289–1296. doi: 10.1143/JPSJ.34.1289 |
[32] | H. F. Wang and B. Y. He, A class of extended Lie superalgebras and their applications, Chaos Solitons Fractals, 2023,168, 113145. doi: 10.1016/j.chaos.2023.113145 |
[33] | N. J. Zabusky and M. D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 1965, 15,240–243. |
[34] | Y. F. Zhang, L. L. Gui and B. L. Feng, Solutions of Cauchy problems for the Gardner equation in three spatial dimensions, Symmetry, 2025, 17. |
[35] | Y. F. Zhang and H. W. Tam, Discussion on integrable properties for higher-dimensional variable-coefficient nonlinear partial differential equations, J. Math. Phys., 2013, 54, 013516. doi: 10.1063/1.4788665 |
[36] | X. Zhou, Inverse scattering transform for the time dependent Schrödinger equation with application to the KPI equation, Commun. Math. Phys., 1990,128,551–564. doi: 10.1007/BF02096873 |