2025 Volume 15 Issue 6
Article Contents

Teng-Fei Jin, Hai-Feng Huo, Shuanglin Jing, Hong Xiang. MODELING THE EFFECTS OF EXTERNAL PROTECTION MEASURES AND OPTIMAL CONTROL ON SEASONAL LASSA FEVER OUTBREAKS IN NIGERIA[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3433-3464. doi: 10.11948/20240567
Citation: Teng-Fei Jin, Hai-Feng Huo, Shuanglin Jing, Hong Xiang. MODELING THE EFFECTS OF EXTERNAL PROTECTION MEASURES AND OPTIMAL CONTROL ON SEASONAL LASSA FEVER OUTBREAKS IN NIGERIA[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3433-3464. doi: 10.11948/20240567

MODELING THE EFFECTS OF EXTERNAL PROTECTION MEASURES AND OPTIMAL CONTROL ON SEASONAL LASSA FEVER OUTBREAKS IN NIGERIA

  • Author Bio: Email: 1935260203@qq.com(T.-F. Jin); Email: shuanglinjing@lzjtu.edu.cn(S. Jing); Email: xiangh1969@163.com(H. Xiang)
  • Corresponding author: Email: hfhuo@lut.edu.cn(H.-F. Huo) 
  • Fund Project: This work is supported by the National Natural Science Foundation of China (12361101), the Key Program of Natural Science in Gansu Province (25JRRA148), and the Foundation for Innovative Fundamental Research Group Proiect of Gansu Province (25JRRA805)
  • Lassa fever, also referred to as Lassa hemorrhagic fever, is an endemic viral disease that frequently triggers epidemics in West Africa. This study presents a disease transmission dynamics model of Lassa fever that integrates external protective measures, the dynamics of rodent reproductive cycles, and the periodic nature of transmission from rodents to humans, aiming to provide a comprehensive understanding of the disease. The basic reproduction number $ \mathcal R_{0} $ can be deduced and as a threshold parameter for global dynamics. The disease-free periodic solution is globally asymptotically stable when $ \mathcal R_{0}<1 $, and the disease persists when $ \mathcal R_{0}>1 $. Based on the data provided by the Nigerian Center for Disease Control and Prevention, the Markov Chain Monte Carlo algorithm is used to simulate the model to find the baseline values of the unknown parameters and the exact value of $ \mathcal R_{0} $ is calculated as 1.6237. Next, the optimal control problem associated with the model is solved through the application of the Pontryagin maximum principle, implementing optimal control strategies for mitigating the transmission of Lassa fever virus. Finally, sensitivity analyses is conducted to determine the key parameters affecting the number of the infectious individuals. The findings suggest that enhancing the rate of external protection and optimizing protective efficiency have a substantial impact on the incidence of Lassa fever infections, serving as effective measures for disease control. However, these measures alone cannot completely eliminate disease transmission. If both measures to reduce rodent transmission and increase mortality rates are implemented, it will be possible to control the epidemic.

    MSC: 34D05, 34D20, 34D23, 49J15
  • 加载中
  • [1] Nigeria Centre for Disease Control, Disease Situation Report: An Update of Lassa Fever Outbreak in Nigeria, 2024. https://ncdc.gov.ng/diseases/sitreps/?cat=5&name=An%20update%20of%20Lassa%20fever%20outbreak%20in%20Nigeria.

    Google Scholar

    [2] World Health Organization, Lassa fever, 2017. https://www.who.int/zh/news-room/fact-sheets/detail/lassa-fever.

    Google Scholar

    [3] World Health Organization, Lassa fever, 2023. https://www.who.int/zh/emergencies/disease-outbreak-news/item/2023-DON463.

    Google Scholar

    [4] World Health Organization, Lassa fever, 2022. https://www.who.int/emergencies/disease-outbreak-news/item/lassa-fever---nigeria.

    Google Scholar

    [5] The World Bank, The World Bank Demography, 2022. https://data.worldbank.org/country/nigeria.

    Google Scholar

    [6] A. Abidemi, M. K. Owolabi and E. Pindza, Modelling the transmission dynamics of Lassa fever with nonlinear incidence rate and vertical transmission, Physica A: Stat. Mech. Appl., 2022,597, 127259. doi: 10.1016/j.physa.2022.127259

    CrossRef Google Scholar

    [7] A. R. Akhmetzhanov, Y. Asai and H. Nishiura, Quantifying the seasonal drivers of transmission for Lassa fever in Nigeria, Phil. Trans. R. Soc. B, 2019,374(1775), 20180268. doi: 10.1098/rstb.2018.0268

    CrossRef Google Scholar

    [8] G. Aronsson and R. Kellogg, On a differential equation arising from compartmental analysis, Math. Biosci., 1978, 38(1–2), 113–122. doi: 10.1016/0025-5564(78)90021-4

    CrossRef Google Scholar

    [9] W. Atokolo, R. O. Aja, D. Omale, et al., Fractional mathematical model for the transmission dynamics and control of Lassa fever, Franklin Open, 2024, 7, 100110. doi: 10.1016/j.fraope.2024.100110

    CrossRef Google Scholar

    [10] E. A. Bakare, E. B. Are, O. E. Abolarin, et al., Mathematical modelling and analysis of transmission dynamics of Lassa fever, J. Appl. Math., 2020, 2020, 1–18.

    Google Scholar

    [11] Z. Bai and Y. Zhou, Global dynamics of an SEIRS epidemic model with periodic vaccination and seasonal contact rate, Nonlinear Anal. Real World Appl., 2012, 13(3), 1060–1068. doi: 10.1016/j.nonrwa.2011.02.008

    CrossRef Google Scholar

    [12] S. Barua, A. Dénes and M. A. Ibrahim, A seasonal model to assess intervention strategies for preventing periodic recurrence of lassa fever, Heliyon, 2021, 7(8), e07760. doi: 10.1016/j.heliyon.2021.e07760

    CrossRef Google Scholar

    [13] S. M. Buckley, J. Casals and W. G. Downs, Isolation and antigenic characterization of Lassa virus, Nature, 1970,227(5254), 174–174.

    Google Scholar

    [14] J. Davies, K. Lokuge and K. Glass, Routine and pulse vaccination for Lassa virus could reduce high levels of endemic disease: A mathematical modelling study, Vaccine, 2019, 37(26), 3451–3456. doi: 10.1016/j.vaccine.2019.05.010

    CrossRef Google Scholar

    [15] O. Diekmann, J. Heesterbeek and M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 2010, 7(47), 873–885. doi: 10.1098/rsif.2009.0386

    CrossRef Google Scholar

    [16] P. Doohan, D. Jorgensen, K. McCain, et al., Lassa fever outbreaks, mathematical models, and disease parameters: A systematic review and meta-analysis, Lancet Glob. Health, 2024, 12(12), e1962–e1972. doi: 10.1016/S2214-109X(24)00379-6

    CrossRef Google Scholar

    [17] P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 2002,180(1–2), 29–48. doi: 10.1016/S0025-5564(02)00108-6

    CrossRef Google Scholar

    [18] J. Elsinga, T. Sunyoto, C. Burzio, et al., Field evaluation of validity and feasibility of Pan-Lassa rapid diagnostic test for Lassa fever in Abakaliki, Nigeria: A prospective diagnostic accuracy study, Lancet Infect. Dis., 2024, 24(9), 1037–1044. doi: 10.1016/S1473-3099(24)00184-1

    CrossRef Google Scholar

    [19] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer Science and Business Media, Berlin, 2012.

    Google Scholar

    [20] M. Friedrich, Who’s blueprint list of priority diseases?, J. Amer. Med. Assoc., 2018,319(19), 1973–1973.

    Google Scholar

    [21] K. P. Gutama and M. Pal, Lassa Fever: A Highly Infectious Life-Threatening Viral Disease of Public Health Concern, Elsevier, 2024. DOI: 10.1016/B978-0-12-822521-9.00082-4.

    Google Scholar

    [22] M. W. Hirsch, Systems of differential equations that are competitive or cooperative Ⅱ: Convergence almost everywhere, SIAM J. Math. Anal., 1985, 16(3), 423–439. doi: 10.1137/0516030

    CrossRef Google Scholar

    [23] M. A. Ibrahim and A. Dénes, A mathematical model for Lassa fever transmission dynamics in a seasonal environment with a view to the 2017–20 epidemic in Nigeria, Nonlinear Anal. Real World Appl., 2021, 60, 103310. doi: 10.1016/j.nonrwa.2021.103310

    CrossRef Google Scholar

    [24] O. I. Idisi and T. T. Yusuf, A mathematical model for Lassa fever transmission dynamics with impacts of control measures: Analysis and simulation, Eur. J. Math. Stat., 2021, 2(2), 19–28. doi: 10.24018/ejmath.2021.2.2.17

    CrossRef Google Scholar

    [25] R. W. Jetoh, S. Malik, B. Shobayo, et al., Epidemiological characteristics of Lassa fever cases in Liberia: A retrospective analysis of surveillance data, 2019–2020, Int. J. Infect. Dis., 2022,122,767–774. doi: 10.1016/j.ijid.2022.07.006

    CrossRef Google Scholar

    [26] S. Jing, H. Huo and H. Xiang, Modeling the effects of meteorological factors and unreported cases on seasonal influenza outbreaks in Gansu province, China, Bull. Math. Biol., 2020, 82, 1–36. doi: 10.1007/s11538-019-00680-3

    CrossRef Google Scholar

    [27] Z. Li and T. Zhang, Analysis of a COVID-19 epidemic model with seasonality, Bull. Math. Biol., 2022, 84(12), 146. doi: 10.1007/s11538-022-01105-4

    CrossRef Google Scholar

    [28] J. Mariën, B. Borremans, F. Kourouma, et al., Evaluation of rodent control to fight Lassa fever based on field data and mathematical modelling, Emerg. Microbes Infect., 2019, 8(1), 640–649. doi: 10.1080/22221751.2019.1605846

    CrossRef Google Scholar

    [29] J. B. McCormick, I. J. King, P. A. Webb, et al., Lassa fever, N. Engl. J. Med., 1986,314(1), 20–26. doi: 10.1056/NEJM198601023140104

    CrossRef Google Scholar

    [30] J. Q. McKendrick, W. D. Tennant and M. T. Tildesley, Modelling seasonality of Lassa fever incidences and vector dynamics in Nigeria, PLoS Negl. Trop. Dis., 2023, 17(11), e0011543. doi: 10.1371/journal.pntd.0011543

    CrossRef Google Scholar

    [31] C. Mitchell and C. Kribs, A comparison of methods for calculating the basic reproductive number for periodic epidemic systems, Bull. Math. Biol., 2017, 79(8), 1846–1869. doi: 10.1007/s11538-017-0309-y

    CrossRef Google Scholar

    [32] T. P. Monath, V. F. Newhouse, G. E. Kemp, et al., Lassa virus isolation from Mastomys natalensis rodents during an epidemic in Sierra Leone, Science, 1974,185(4147), 263–265. doi: 10.1126/science.185.4147.263

    CrossRef Google Scholar

    [33] S. S. Musa, S. Zhao, D. Gao, et al., Mechanistic modelling of the large-scale Lassa fever epidemics in Nigeria from 2016 to 2019, J. Theor. Biol., 2020,493, 110209. doi: 10.1016/j.jtbi.2020.110209

    CrossRef Google Scholar

    [34] J. Nicholas, The Role of Animals in Emerging Viral Diseases, Academic Press, Boston, 2014.

    Google Scholar

    [35] A. Olayemi, A. Obadare, A. Oyeyiola, et al., Small mammal diversity and dynamics within Nigeria, with emphasis on reservoirs of the Lassa virus, Syst. Biodivers., 2018 16(2), 118–127. doi: 10.1080/14772000.2017.1358220

    CrossRef Google Scholar

    [36] I. S. Onah, O. C. Collins, P. G. U. Madueme, et al., Dynamical system analysis and optimal control measures of Lassa fever disease model, Int. J. Math. Math. Sci., 2020, 2020, 1–18.

    Google Scholar

    [37] L. Perko, Differential Equations and Dynamical Systems, Springer Science and Business Media, Heidelberg, 2013.

    Google Scholar

    [38] L. S. Pontryagin, Mathematical Theory of Optimal Processes, Routledge, London, 2018.

    Google Scholar

    [39] M. E. Price, S. P. Fisher-Hoch, R. B. Craven, et al., A prospective study of maternal and fetal outcome in acute Lassa fever infection during pregnancy, Br. Med. J., 1988,297(6648), 584–587. doi: 10.1136/bmj.297.6648.584

    CrossRef Google Scholar

    [40] J. K. Richmond and D. J. Baglole, Lassa fever: Epidemiology, clinical features, and social consequences, Br. Med. J., 2003,327(7426), 1271–1275. doi: 10.1136/bmj.327.7426.1271

    CrossRef Google Scholar

    [41] H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge university press, Cambridge, 1995.

    Google Scholar

    [42] E. H. Stephenson, E. W. Larson and J. W. Dominik, Effect of environmental factors on aerosol-induced Lassa virus infection, J. Med. Virol., 1984, 14(4), 295–303. doi: 10.1002/jmv.1890140402

    CrossRef Google Scholar

    [43] H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 1992, 30(7), 755–763.

    Google Scholar

    [44] W. Wang and X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Differ. Equ., 2008, 20,699–717. doi: 10.1007/s10884-008-9111-8

    CrossRef Google Scholar

    [45] F. Zhang and X. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 2007,325(1), 496–516. doi: 10.1016/j.jmaa.2006.01.085

    CrossRef Google Scholar

    [46] Y. Zhang and Y. Xiao, Global dynamics for a Filippov epidemic system with imperfect vaccination, Nonlinear Anal. Hybrid Syst., 2020, 38, 100932. doi: 10.1016/j.nahs.2020.100932

    CrossRef Google Scholar

    [47] X. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2017.

    Google Scholar

Figures(10)  /  Tables(2)

Article Metrics

Article views(31) PDF downloads(57) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint