2025 Volume 15 Issue 6
Article Contents

M. Elsaid Ramadan, Hamdy M. Ahmed, Abeer S. Khalifa, Karim K. Ahmed. INVARIANT SOLITONS AND TRAVELLING-WAVE SOLUTIONS TO A HIGHER-ORDER NONLINEAR SCHRÖDINGER EQUATION IN AN OPTICAL FIBER WITH AN IMPROVED TANH-FUNCTION ALGORITHM[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3270-3289. doi: 10.11948/20250042
Citation: M. Elsaid Ramadan, Hamdy M. Ahmed, Abeer S. Khalifa, Karim K. Ahmed. INVARIANT SOLITONS AND TRAVELLING-WAVE SOLUTIONS TO A HIGHER-ORDER NONLINEAR SCHRÖDINGER EQUATION IN AN OPTICAL FIBER WITH AN IMPROVED TANH-FUNCTION ALGORITHM[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3270-3289. doi: 10.11948/20250042

INVARIANT SOLITONS AND TRAVELLING-WAVE SOLUTIONS TO A HIGHER-ORDER NONLINEAR SCHRÖDINGER EQUATION IN AN OPTICAL FIBER WITH AN IMPROVED TANH-FUNCTION ALGORITHM

  • Optical fiber connection is essential to modern communication. A high-order nonlinear Schrödinger equation (NLSE) with additional dispersion of high-order and nonlinear components is studied in an inhomogeneous optical fiber. We provide numerous new analytic solutions via the improved modified extended tanh-function algorithm, including rational solution, singular periodic solution, Jacobi elliptic solutions (JESs), (bright, singular, dark) soliton, Weierstrass elliptic doubly periodic type solutions, and exponential solution. By employing the previously outlined method, they demonstrate their uniqueness for the given challenge. The results are presented in a clear and concise manner for various values of the necessary free parameters. Wolfram Mathematica's contour plot and 2D and 3D visualisations are used to show this process. The outcomes show how accurate, knowledgeable, and effective the computational procedures were. They may be used for increasingly complicated phenomena by integrating them with representational calculations. This finding constitutes a major advancement in our comprehension of the intricate and capricious behavior of this mathematical model.

    MSC: 35C07, 35C08, 35C09, 35G20
  • 加载中
  • [1] K. K. Ahmed, H. M. Ahmed, N. M. Badra and W. B. Rabie, Optical solitons retrieval for an extension of novel dual-mode of a dispersive non-linear Schrödinger equation, Optik, 2024, 307, 171835. doi: 10.1016/j.ijleo.2024.171835

    CrossRef Google Scholar

    [2] K. K. Ahmed, N. M. Badra, H. M. Ahmed and W. B. Rabie, Soliton solutions and other solutions for Kundu-Eckhaus equation with quintic nonlinearity and Raman effect using the improved modified extended tanh-function method, Mathematics, 2022, 10(22), 4203. doi: 10.3390/math10224203

    CrossRef Google Scholar

    [3] K. K. Ahmed, N. M. Badra, H. M. Ahmed and W. B. Rabie, Soliton solutions of generalized Kundu-Eckhaus equation with an extra-dispersion via improved modified extended tanh-function technique, Opt. Quantum Electron., 2023, 55(4), 299. doi: 10.1007/s11082-023-04599-x

    CrossRef Google Scholar

    [4] K. K. Ahmed, N. M. Badra, H. M. Ahmed, W. B. Rabie, M. Mirzazadeh, M. Eslami and M. S. Hashemi, Investigation of solitons in magneto-optic waveguides with Kudryashov's law nonlinear refractive index for coupled system of generalized nonlinear Schrödinger's equations using modified extended mapping method, Nonlinear Anal-Model, 2024, 1-19.

    Google Scholar

    [5] K. K. Ahmed, H. H. Hussein, H. M. Ahmed, W. B. Rabie and W. Alexan, Analysis of the dynamical behaviors for the generalized Bogoyavlvensky-Konopelchenko equation and its analytical solutions occurring in mathematical physics, Ain Shams Eng. J., 2024, 15(11), 103000. doi: 10.1016/j.asej.2024.103000

    CrossRef Google Scholar

    [6] N. H. Ali, S. A. Mohammed and J. Manafian, Study on the simplified MCH equation and the combined KdV-mKdV equations with solitary wave solutions, Partial Differ. Equ. Appl. Math., 2024, 9, 100599. doi: 10.1016/j.padiff.2023.100599

    CrossRef Google Scholar

    [7] C. L. Bai and H. Zhao, Generalized extended tanh-function method and its application, Chaos, Solitons Fract., 2006, 27(4), 1026-1035. doi: 10.1016/j.chaos.2005.04.069

    CrossRef Google Scholar

    [8] I. Bendahmane, H. Triki, A. Biswas, A. S. Alshomrani, Q. Zhou, S. P. Moshokoa and M. Belic, Bright, dark and W-shaped solitons with extended nonlinear Schrödinger's equation for odd and even higher-order terms, Superlattice. Microst., 2018, 114, 53-61. doi: 10.1016/j.spmi.2017.12.007

    CrossRef Google Scholar

    [9] S. Boscolo and C. Finot, Artificial neural networks for nonlinear pulse shaping in optical fibers, Opt. Laser Techol., 2020, 131, 106439. doi: 10.1016/j.optlastec.2020.106439

    CrossRef Google Scholar

    [10] B. Cao and H. Zhang, Conversions and interactions of the nonlinear waves in a generalized higher-order nonlinear Schrödinger equation, Optik, 2018, 158, 112-117. doi: 10.1016/j.ijleo.2017.11.195

    CrossRef Google Scholar

    [11] J. Chen, Z. Luan, Q. Zhou, A. K. Alzahrani, A. Biswas and W. Liu, Periodic soliton interactions for higher-order nonlinear Schrödinger equation in optical fibers, Nonlinear Dyn., 2020, 100, 2817-2821. doi: 10.1007/s11071-020-05649-9

    CrossRef Google Scholar

    [12] S. Chettouh, H. Triki, A. El-Akrmi, Q. Zhou, S. P. Moshokoa, M. Z. Ullah, A. Biswas and M. Belic, Dipole solitons in an extended nonlinear Schrödinger's equation with higher-order even and odd terms, Optik, 2017, 145, 644-649. doi: 10.1016/j.ijleo.2017.08.034

    CrossRef Google Scholar

    [13] C. H. Feng, B. Tian and X. T. Gao, Bilinear form, N solitons, breathers and periodic waves for a (3+1)-dimensional Korteweg-de Vries equation with the time-dependent coefficients in a fluid, Qual. Theory Dyn. Syst., 2024, 23(1), 291.

    Google Scholar

    [14] C. Finot and S. Boscolo, Nonlinear shaping of light in optical fibers, Adv. Nonlin. Photon., 2023, 381-412.

    Google Scholar

    [15] X. Y. Gao, In an ocean or a river: Bilinear auto-Bäcklund transformations and similarity reductions on an extended time-dependent (3+1)-dimensional shallow water wave equation, China Ocean Eng., 2025, 39, 160-165. doi: 10.1007/s13344-025-0012-y

    CrossRef Google Scholar

    [16] X. Y. Gao, Hetero-Bäcklund transformation, bilinear forms and multi-solitons for a (2+1)-dimensional generalized modified dispersive water-wave system for the shallow water, Chin. J. Phys., 2024, 92, 1233-1239. doi: 10.1016/j.cjph.2024.10.004

    CrossRef Google Scholar

    [17] X. Y. Gao, Symbolic computation on a (2+1)-dimensional generalized nonlinear evolution system in fluid dynamics, plasma physics, nonlinear optics and quantum mechanics, Qual. Theory Dyn. Syst., 2024, 23(5), 202. doi: 10.1007/s12346-024-01045-5

    CrossRef Google Scholar

    [18] X. Y. Gao, In plasma physics and fluid dynamics: Symbolic computation on a (2+1)-dimensional variable-coefficient Sawada-Kotera system, Appl. Math. Lett., 2025, 159, 109262. doi: 10.1016/j.aml.2024.109262

    CrossRef Google Scholar

    [19] X. Y. Gao, Oceanic shallow-water investigations on a generalized Whitham-Broer-Kaup-Boussinesq-Kupershmidt system, Phys. Fluids, 2023, 35(12), 127106. doi: 10.1063/5.0170506

    CrossRef Google Scholar

    [20] X. Y. Gao, Two-layer-liquid and lattice considerations through a (3+1)-dimensional generalized Yu-Toda-Sasa-Fukuyama system, Appl. Math. Lett., 2024, 152, 109018. doi: 10.1016/j.aml.2024.109018

    CrossRef Google Scholar

    [21] X. T. Gao and B. Tian, Similarity reductions on a (2+1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili system describing certain electromagnetic waves in a thin film, Int. J. Theor. Phys., 2024, 63(4), 99. doi: 10.1007/s10773-024-05629-4

    CrossRef Google Scholar

    [22] W. Y. Guan and B. Q. Li, New observation on the breather for a generalized nonlinear Schrödinger system with two higher-order dispersion operators in inhomogeneous optical fiber, Optik, 2019, 181, 853-861. doi: 10.1016/j.ijleo.2018.12.148

    CrossRef Google Scholar

    [23] N. Gupta, A. K. Alex, R. Partap and R. Johari, Self action effects of q-Gaussian laser beam in preformed parabolic plasma channels: Effect of nonlinear absorption, J. Opt., 2024, 1-14.

    Google Scholar

    [24] K. Hammani, B. Kibler, J. Fatome, S. Boscolo, G. Genty, J. M. Dudley, G. Millot and C. Finot, Nonlinear spectral shaping and optical rogue events in fiber-based systems, Opt. Fiber. Technol., 2012, 18, 248-256. doi: 10.1016/j.yofte.2012.06.009

    CrossRef Google Scholar

    [25] H. H. Hussein, H. M. Ahmed, W. B. Rabie, K. K. Ahmed, M. S. Hashemi and M. Bayram, Multiple soliton solutions and other travelling wave solutions to new structured (2+1)-dimensional integro-partial differential equation using efficient technique, Phys. Scr., 2024, 99(10), 105270. doi: 10.1088/1402-4896/ad7993

    CrossRef Google Scholar

    [26] Y. Jiang, B. Tian, W. -J. Liu, K. Sun, M. Li and P. Wang, Soliton interactions and complexes for coupled nonlinear Schrödinger equations, Phys. Rev. E, 2012, 85(3), 036605. doi: 10.1103/PhysRevE.85.036605

    CrossRef Google Scholar

    [27] E. Kengne, Engineering of chirp localized waves in optical media with positive group velocity dispersion, Chaos Solitons Fract., 2024, 187, 115354. doi: 10.1016/j.chaos.2024.115354

    CrossRef Google Scholar

    [28] A. S. Khalifa, H. M. Ahmed, N. M. Badra and W. B. Rabie, Exploring solitons in optical twin-core couplers with Kerr law of nonlinear refractive index using the modified extended direct algebraic method, Opt. Quantum Electron., 2024, 56(6), 1060. doi: 10.1007/s11082-024-06882-x

    CrossRef Google Scholar

    [29] A. S. Khalifa, N. M. Badra, H. M. Ahmed and W. B. Rabie, Retrieval of optical solitons in fiber Bragg gratings for high-order coupled system with arbitrary refractive index, Optik, 2023, 287, 171116. doi: 10.1016/j.ijleo.2023.171116

    CrossRef Google Scholar

    [30] Y. Kuang and L. Tian, Higher-order soliton solutions for the derivative nonlinear Schrödinger equation via improved Riemann-Hilbert method, J. Nonlinear Math. Phys., 2024, 31, 58. doi: 10.1007/s44198-024-00228-7

    CrossRef Google Scholar

    [31] Z. Z. Lan, Multi-soliton solutions, breather-like and bound-state solitons for complex modified Korteweg-de Vries equation in optical fibers, Chin. Phys. B, 2024, 33(6), 060201. doi: 10.1088/1674-1056/ad39d7

    CrossRef Google Scholar

    [32] Z. Z. Lan, N-soliton solutions, Bäcklund transformation and Lax Pair for a generalized variable-coefficient cylindrical Kadomtsev-Petviashvili equation, Appl. Math. Lett., 2024, 158, 109239. doi: 10.1016/j.aml.2024.109239

    CrossRef Google Scholar

    [33] Z. Z. Lan, Multiple soliton asymptotics in a spin-1 Bose-Einstein condensate, Chin. Phys. Lett., 2024, 41(9), 090501. doi: 10.1088/0256-307X/41/9/090501

    CrossRef Google Scholar

    [34] Z. Z. Lan, Semirational rogue waves of the three coupled higher-order nonlinear Schrödinger equations, Appl. Math. Lett., 2024, 147, 108845. doi: 10.1016/j.aml.2023.108845

    CrossRef Google Scholar

    [35] Z. Z. Lan, Bound-state solitons in three-wave resonant interactions, Nonlinear Dyn., 2024, 112(22), 20173-20181. doi: 10.1007/s11071-024-10121-z

    CrossRef Google Scholar

    [36] J. Li, C. Wang and P. Wang, Narrow-bandwidth picosecond dissipative soliton resonance in an all-anomalous-dispersion Er/Yb co-doped fiber laser, Opt. Fiber. Technol., 2024, 82, 103637. doi: 10.1016/j.yofte.2023.103637

    CrossRef Google Scholar

    [37] F. Y. Liu, Y. T. Gao, X. Yu and C. C. Ding, Wronslian, Gramian, Pfaffian and periodic-wave solutions for a (3+1)-dimensional generalized nonlinear evolution equation arising in the shallow water waves, Nonlinear Dynam., 2022, 108, 1599-1616. doi: 10.1007/s11071-022-07249-1

    CrossRef Google Scholar

    [38] S. S. Mahmood and M. A. S. Murad, Soliton solutions to time-fractional nonlinear Schrödinger equation with cubic-quintic-septimal in weakly nonlocal media, Phys. Lett. A., 2024, 130183.

    Google Scholar

    [39] M. A. S. Murad, H. F. Ismael, T. A. Sulaiman and H. Bulut, Analysis of optical solutions of higher-order nonlinear Schrödinger equation by the new Kudryashov and Bernoulli's equation approaches, Opt. Quantum Electron., 2024, 56(1), 76. doi: 10.1007/s11082-023-05612-z

    CrossRef Google Scholar

    [40] W. B. Rabie, K. K. Ahmed, N. M. Badra, H. M. Ahmed, M. Mirzazadeh and M. Eslami, New solitons and other exact wave solutions for coupled system of perturbed highly dispersive CGLE in birefringent fibers with polynomial nonlinearity law, Opt. Quantum Electron., 2024, 56(5), 1-22.

    Google Scholar

    [41] H. W. Shan, B. Tian, C. D. Cheng, X. T. Gao, Y. Q. Chen and H. D. Liu, N-soliton and other analytic solutions for a (3+1)-dimensional Korteweg-de Vries-Calogero-Bogoyavlenskii-Schiff equation with the time-dependent coefficients for the shallow water waves, Qual. Theory Dyn. Syst., 2024, 23(Suppl 1), 267.

    Google Scholar

    [42] E. Tego, F. Matera and D. D. Buono, Experimental investigation on transmission control protocol throughput behavior in optical fiber access networks, Fiber Integr. Opt., 2016, 35, 72-85. doi: 10.1080/01468030.2016.1153172

    CrossRef Google Scholar

    [43] H. Triki, A. Biswas, D. Milovi'c and M. Beli'c, Chirped optical solitons in birefringent fibers with parabolic law nonlinearity and four-wave mixing, Acta Phys. Pol. A, 2016, 130(3), 718-726. doi: 10.12693/APhysPolA.130.718

    CrossRef Google Scholar

    [44] C. C. Wei, B. Tian, D. Y. Yang and S. H. Liu, Jacobian-elliptic-function and rogue-periodic-wave solutions of a high-order nonlinear Schrödinger equation in an inhomogeneous optical fiber, Chin. J. Phys., 2023, 81, 354-361.

    Google Scholar

    [45] X. H. Wu, Y. T. Gao and X. Yu, Dark-soliton asymptotics for a repulsive nonlinear system in a baroclinic flow, Phys. Fluids, 2024, 36(5), 056615.

    Google Scholar

    [46] X. H. Wu, Y. T. Gao, X. Yu, C. C. Ding and L. Q. Li, Modified generalized Darboux transformation and solitons for a Lakshmanan-Porsezian-Daniel equation, Chaos Solitons Fract., 2022, 162, 112399.

    Google Scholar

    [47] H. M. Yin, Q. Pan and K. W. Chow, The Fermi-Pasta-Ulam-Tsingou recurrence for discrete systems: Cascading mechanism and machine learning for the Ablowitz-Ladik equation, Commun. Nonlinear Sci. Numer. Simul., 2022, 114, 106664.

    Google Scholar

    [48] X. H. Zhao, Multi-solitons and integrability for a (2+1)-dimensional variable coefficients Date-Jimbo-Kashiwara-Miwa equation, Appl. Math. Lett., 2024, 149, 108895.

    Google Scholar

    [49] X. H. Zhao and S. X. Li, Dark soliton solutions for a variable coefficient higher-order Schrödinger equation in the dispersion decreasing fibers, Appl. Math. Lett., 2022, 132, 108159.

    Google Scholar

    [50] Q. Zhou, Q. Zhu and A. Biswas, Optical solitons in birefringent fibers with parabolic law nonlinearity, Opt. Appl., 2014, 44(3), 399-409.

    Google Scholar

Figures(6)

Article Metrics

Article views(52) PDF downloads(17) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint