2025 Volume 15 Issue 6
Article Contents

Nazek A. Obeidat, Mahmoud S. Rawashdeh, Laith M. Khaleel. THEORIES AND APPLICATIONS OF ADOMIAN DECOMPOSITION $ \mathcal{J} $-TRANSFORM METHOD WITH THEORETICAL ANALYSIS AND SIMULATION[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3728-3750. doi: 10.11948/20250053
Citation: Nazek A. Obeidat, Mahmoud S. Rawashdeh, Laith M. Khaleel. THEORIES AND APPLICATIONS OF ADOMIAN DECOMPOSITION $ \mathcal{J} $-TRANSFORM METHOD WITH THEORETICAL ANALYSIS AND SIMULATION[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3728-3750. doi: 10.11948/20250053

THEORIES AND APPLICATIONS OF ADOMIAN DECOMPOSITION $ \mathcal{J} $-TRANSFORM METHOD WITH THEORETICAL ANALYSIS AND SIMULATION

  • This work focuses on using the Adomian decomposition $ \mathcal{J} $-transform method ($ \mathcal{ADJM} $) to solve both linear and nonlinear differential equations, with the aim of obtaining exact solutions for various types of differential equations, such as the Bratu equations and second-order linear partial telegraph equation. We present comprehensive proofs for new theorems associated with the $ \mathcal{J} $-transform method. This approach combines the $ \mathcal{J} $-transform method ($ \mathcal{JTM} $) and the Adomian decomposition method ($ \mathcal{ADM} $). We carry out a theoretical analysis of $ \mathcal{ADJM} $ applied to certain nonlinear differential equations and give proofs to the existence and uniqueness theorems along with error estimates. The solutions obtained are compared with exact solutions from other established methods in the literature. The study emphasizes the notable advantages of $ \mathcal{ADJM} $, highlighting its effectiveness in solving both ODEs and PDEs. In order to demonstrate the unique advantages of the employed method, we give exact solutions in the form of convergent power series with easily obtainable coefficients. Some of the symbolic and numerical calculations were executed using Mathematica software 13.

    MSC: 44A10, 44A15, 44A20, 44A30, 44A35
  • 加载中
  • [1] M. J. Ablowitz and A. S. Fokas, Introduction to Complex Variables and Applications (Vol. 63), Cambridge University Press, 2021.

    Google Scholar

    [2] S. A. Ahmed, A. Qazza, R. Saadeh and T. M. Elzaki, Conformable double laplace-sumudu iterative method, Symmetry, 2022, 15(1), 78. doi: 10.3390/sym15010078

    CrossRef Google Scholar

    [3] M. O. Aibinu, F. M. Mahomed and P. E. Jorgensen, Solutions of fractional differential models by using Sumudu transform method and its hybrid, Partial Differential Equations in Applied Mathematics, 2024, 11, 100872. doi: 10.1016/j.padiff.2024.100872

    CrossRef Google Scholar

    [4] M. Almazmumy, A. A. Alsulami, H. O. Bakodah and N. A. Alzaid, Adomian decomposition method with inverse differential operator and orthogonal polynomials for nonlinear models, International Journal of Analysis and Applications, 2024, 22, 65-65. doi: 10.28924/2291-8639-22-2024-65

    CrossRef Google Scholar

    [5] S. Ali Alomari and Y. Qaid Hasan, Enhanced Adomian decomposition method for accurate numerical solutions of PDE, Asian Research Journal of Mathematics, 2024, 20(11), 26-41. doi: 10.9734/arjom/2024/v20i11857

    CrossRef Google Scholar

    [6] A. S. Alshehry, R. Shah, N. A. Shah and I. Dassios, A reliable technique for solving fractional partial differential equation, Axioms, 2022, 11(10), 574. doi: 10.3390/axioms11100574

    CrossRef Google Scholar

    [7] M. Ayalew, Numerical solution of time fractional Klein-Gordon equation in framework of the Yang-Abdel-Cattani fractional derivative operator, Advances in Analysis and Applied Mathematics, 2024, 1(2), 126-139.

    Google Scholar

    [8] C. Burgos, J. C. Cortés, L. Villafuerte and R. J. Villanueva, Solving random fractional second-order linear equations via the mean square Laplace transform: Theory and statistical computing, Applied Mathematics and Computation, 2022, 418, 126846. doi: 10.1016/j.amc.2021.126846

    CrossRef Google Scholar

    [9] A. T. Deresse, Analytical solution of one-dimensional nonlinear conformable fractional telegraph equation by reduced differential transform method, Advances in Mathematical Physics, 2022, 2022(1). DOI: 10.1155/2022/7192231.

    CrossRef Google Scholar

    [10] H. M. Fahad, M. U. Rehman and A. Fernandez, On Laplace transforms with respect to functions and their applications to fractional differential equations, Mathematical Methods in the Applied Sciences, 2023, 46(7), 8304-8323. doi: 10.1002/mma.7772

    CrossRef Google Scholar

    [11] F. Haroon, S. Mukhtar and R. Shah, Fractional view analysis of Fornberg-Whitham equations by using Elzaki transform, Symmetry, 2022, 14(10), 2118. doi: 10.3390/sym14102118

    CrossRef Google Scholar

    [12] Q. Hou, Y. Li, V. P. Singh and Z. Sun, Physics-informed neural network for diffusive wave model, Journal of Hydrology, 2024, 637, 131261. doi: 10.1016/j.jhydrol.2024.131261

    CrossRef Google Scholar

    [13] H. Jin, S. Tian, J. Hu, L. Zhu and S. Zhang, Robust ratio-typed test for location change under strong mixing heavy-tailed time series model, Communications in Statistics-Theory and Methods, 2025, 1-24.

    Google Scholar

    [14] A. Keram and P. Huang, Convergence analysis of the Uzawa iterative method for the thermally coupled stationary in compressible magnetohydrodynamics flow, Journal of Applied Analysis & Computation, 2025, 15(3), 1563-1579.

    Google Scholar

    [15] E. Kuffi and S. F. Maktoof, "Emad-Falih transform" a new integral transform, Journal of Interdisciplinary Mathematics, 2021, 24(8), 2381-2390. doi: 10.1080/09720502.2021.1995194

    CrossRef Google Scholar

    [16] R. Kumar, J. Chandel and S. Aggarwal, A new integral transform "Rishi Transform" with application, Journal of Scientific Research, 2022, 14(2), 521-532. doi: 10.3329/jsr.v14i2.56545

    CrossRef Google Scholar

    [17] S. R. Kushare, D. P. Patil and A. M. Takate, The new integral transform, "Kushare transform", International Journal of Advances in Engineering and Management, 2021, 3(9), 1589-1592.

    Google Scholar

    [18] J. Liu, M. Nadeem and L. F. Iambor, Application of Yang homotopy perturbation transform approach for solving multi-dimensional diffusion problems with time-fractional derivatives, Scientific Reports, 2023, 13(1), 21855. doi: 10.1038/s41598-023-49029-w

    CrossRef Google Scholar

    [19] S. Maitama and W. Zhao, Beyond Sumudu transform and natural transform: J-transform properties and applications, Journal of Applied Analysis and Computation, 2020, 10, 1223-1241. doi: 10.11948/20180258

    CrossRef Google Scholar

    [20] E. A. Mansour, E. A. Kuffi and S. A. Mehdi, The new integral transform "SEE transform" and its applications, Periodicals of Engineering and Natural sciences (PEN), 2021, 9(2), 1016-1029. doi: 10.21533/pen.v9i2.2023

    CrossRef Google Scholar

    [21] S. R. Moosavi Noori and N. Taghizadeh, Study of convergence of reduced differential transform method for different classes of differential equations, International Journal of Differential Equations, 2021, 2021(1). DOI: 10.1155/2021/6696414.

    CrossRef Google Scholar

    [22] N. A. Obeidat and M. S. Rawashdeh, Theoretical analysis of new techniques applied to applications in fluid dynamics, International Journal of Modelling and Simulation, 2025, 45(2), 466-477. doi: 10.1080/02286203.2023.2216048

    CrossRef Google Scholar

    [23] N. A. Obeidat and M. S. Rawashdeh, On theories of natural decomposition method applied to system of nonlinear differential equations in fluid mechanics, Advances in Mechanical Engineering, 2023, 2023(1). DOI: 10.1177/16878132221149835.

    CrossRef Google Scholar

    [24] N. A. Obeidat, M. S. Rawashdeh and R. Rababa'h, Important theories and applications arise in physics and engineering using a new technique: The natural decomposition method, Journal of Advanced Research in Applied Sciences and Engineering Technology, 2024, 34(1), 142-163.

    Google Scholar

    [25] N. A. Obeidat, M. S. Rawashdeh and M. N. Al Smadi, An efficient technique via the $\mathbb {J} $-transform decomposition method: Theoretical analysis with applications, Journal of Applied Analysis & Computation, 2025, 15(2), 1068-1090.

    $\mathbb {J} $-transform decomposition method: Theoretical analysis with applications" target="_blank">Google Scholar

    [26] D. P. Patil and S. S. Khakale, The new integral transform "Soham transform", International Journal of Advances in Engineering and Managemen, 2021, 3(10), 126-132.

    Google Scholar

    [27] D. P. Patil, D. S. Patil and S. M. Kanchan, New integral transform, "Double Kushare transform", IRE Journals, 2022, 6(1), 45-52.

    Google Scholar

    [28] A. Qazza, A. Burqan, R. Saadeh and R. Khalil, Applications on double ARA-Sumudu transform in solving fractional partial differential equations, Symmetry, 2022, 14(9), 1817. doi: 10.3390/sym14091817

    CrossRef Google Scholar

    [29] A. Al-Rab'a, S. Al-Sharif and M. Al-Khaleel, Double conformable Sumudu transform, Symmetry, 2022, 14(11), 2249. doi: 10.3390/sym14112249

    CrossRef Google Scholar

    [30] M. S. Rawashdeh, N. A. Obeidat and H. S. Abedalqader, New class of nonlinear fractional integro-differential equations with theoretical analysis via fixed point approach: Numerical and exact solutions, Journal of Applied Analysis and Computation, 2023, 13(5), 2767-2787. doi: 10.11948/20220575

    CrossRef Google Scholar

    [31] N. Sharma, G. Alhawael, P. Goswami and S. Joshi, Variational iteration method for n-dimensional time-fractional Navier-Stokes equation, Applied Mathematics in Science and Engineering, 2024, 32(1). DOI: 10.1080/27690911.2024.2334387.

    CrossRef Google Scholar

    [32] M. Shirazian, A new acceleration of variational iteration method for initial value problems, Mathematics and Computers in Simulation, 2023, 214, 246-259.

    Google Scholar

    [33] M. M. A. Taleb, S. A. A. Al-Salehi, S. Muhammad and V. C. Borkar, Fixed point theorems over B-metric-like spaces and applications in electric circuit equations, Journal of Applied Analysis & Computation, 2025, 15(3), 1430-1452.

    Google Scholar

    [34] Z. Wang, Y. Yang, F. Parastesh, S. Cao and J. Wang, Chaotic dynamics of a carbon nanotube oscillator with symmetry-breaking, Physica Scripta, 2024, 100(1), 015225.

    Google Scholar

    [35] Y. Yang and H. Li, Neural ordinary differential equations for robust parameter estimation in dynamic systems with physical priors, Applied Soft Computing, 2025, 169, 112649. doi: 10.1016/j.asoc.2024.112649

    CrossRef Google Scholar

Figures(5)

Article Metrics

Article views(73) PDF downloads(52) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint