Citation: | Tingting Zhang, Ruyun Ma, Meng Yan. POSITIVE RADIAL SOLUTIONS FOR A SEMIPOSITONE PROBLEM OF ELLIPTIC KIRCHHOFF EQUATIONS WITH SUBLINEAR NONLINEARITIES[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3769-3781. doi: 10.11948/20250061 |
We study the semipositone problem of the elliptic Kirchhoff type equation
$ \begin{eqnarray} \left\{ \begin{array}{cc} \begin{aligned} &-\Big(b\int_{\Omega_e}|\nabla u|^2dx\Big)\Delta u=\lambda K(|x|)f(u), \ \ &x\in B_e,\\ &u(x)=0, \ \ &|x|=r_0,\\ &u(x)\rightarrow0, \ \ &|x|\rightarrow \infty, \end{aligned} \end{array} \right. \end{eqnarray} $
where$ b $is a positive constant,$ \lambda $is a positive parameter,$ B_e=\{x\in\mathbb{R}^N:\, |x|>r_0\} $,$ N>2 $,$ K : [r_0, +\infty) \to (0, +\infty) $is continuous with$ r^{N+\eta} K(r) $bounded for some$ \eta > 0 $,$ f : [0, +\infty) \to \mathbb{R} $is continuous,$ f(0)<0 $and$ \underset{u\to\infty}\lim\frac{f(u)}{u^q} =\beta $for some$ q\in (0, 1] $. We show that there exists$ \lambda^*>0 $, such that (0.1) has at least one positive radial solution if$ \lambda>\lambda^* $. The proof of the main result is based upon bifurcation theory.
[1] | I. Ali, A. Castro and R. Shivaji, Uniqueness and stability of nonnegative solutions for semipositone problems in a ball, Proc. Amer. Math. Soc., 1993, 117, 775–782. doi: 10.1090/S0002-9939-1993-1116249-5 |
[2] | H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 1976, 18(4), 620–709. doi: 10.1137/1018114 |
[3] | A. Ambrosetti and D. Arcoya, Positive solutions of elliptic Kirchhoff equations, Adv. Nonlinear Stud., 2017, 17, 3–15. doi: 10.1515/ans-2016-6004 |
[4] | A. Ambrosetti, D. Arcoya and B. Buffoni, Positive solutions for some semipositone problems via bifurcation theory, Differential Integral Equations, 1994, 7, 655–663. |
[5] | H. Asakawa, Nonresonant singular two-point boundary value problems, Nonlinear Anal., 2001, 44(6), 791–809. doi: 10.1016/S0362-546X(99)00308-9 |
[6] | X. F. Cao and G. W. Dai, Spectrum global bifurcation and nodal solutions to Kirchhoff-type equations, Electron. J. Differential Equations, 2018, 179, 1–10. |
[7] | G. W. Dai, Some global results for a class of homogeneous nonlocal eigenvalue problems, Commun. Contemp. Math., 2019, 21(3), 1–23. |
[8] | T. T. Dai, Z. Q. Ou, C. L. Tang and Y. Lv, Positive solutions of Kirchhoff type problems with critical growth on exterior domains, Anal. Math. Phys., 2024, 14(4), 1–32. |
[9] | K. Deimling, Nonlinear Functional Analysis, Springer, New York, 1985. |
[10] | G. M. Figueiredo and D. C. de Morais Filho, Existence of positive solution for indefinite Kirchhoff equation in exterior domains with subcritical or critical growth, J. Aust. Math. Soc., 2017, 103(3), 329–340. doi: 10.1017/S1446788716000574 |
[11] | G. Figueiredo, C. Morales-Rodrigo, J. Santos and A. Suárez, Study of a nonlinear Kirchhoff equation with nonhomogeneous material, J. Math. Anal. Appl., 2014, 416, 597–608. doi: 10.1016/j.jmaa.2014.02.067 |
[12] | J. R. Graef, D. Hebboul and T. Moussaoui, Existence of positive radial solutions to a p-Laplacian Kirchhoff type problem on the exterior of a ball, Opuscula Math., 2023, 43(1), 47–66. doi: 10.7494/OpMath.2023.43.1.47 |
[13] | D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Orlando, FL, 1988. |
[14] | D. D. Hai and R. Shivaji, Positive radial solutions for a class of singular superlinear problems on the exterior of a ball with nonlinear boundary conditions, J. Math. Anal. Appl., 2017, 456(2), 872–881. doi: 10.1016/j.jmaa.2017.06.088 |
[15] | Z. P. Liang, F. Y. Li and J. P. Shi, Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. Inst. Henri Poincaré, 2014, 31, 155–167. doi: 10.1016/j.anihpc.2013.01.006 |
[16] | P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev., 1982, 24, 441–467. doi: 10.1137/1024101 |
[17] | F. Liu, H. Luo and G. W. Dai, Global bifurcation and nodal solutions for homogeneous Kirchhoff type equations, Electron. J. Qual. Theory Differ. Equ., 2020, 29, 1–13. |
[18] | R. Y. Ma, Connected component of positive solutions for singular superlinear semi-positone problems, Topol. Methods Nonlinear Anal., 2020, 55(1), 51–62. |
[19] | G. Meng, P. Yan and M. Zhang, Spectrum of one-dimensional $p$-Laplacian with an indefinite integrable weight, Mediterr. J. Math., 2010, 7(2), 225–248. doi: 10.1007/s00009-010-0040-5 |
[20] | K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 2006, 221(1), 246–255. doi: 10.1016/j.jde.2005.03.006 |
[21] | T. Shibata, Bifurcation diagrams of one-dimensional Kirchhoff-type equations, Adv. Nonlinear Anal., 2023, 12(1), 356–368. |
[22] | K. Silva, S. M. de Sousa, C. A. Santos and M. Yang, Multiplicity of solutions for Brezis-Oswald-type problems with indefinite Kirchhoff operators, Z. Angew. Math. Phys., 2023, 74(6), 1–20. |
[23] | Y. Wang, R. Yuan and Z. H. Zhang, Positive solutions for Kirchhoff equation in exterior domains with small Sobolev critical perturbation, Complex Var. Elliptic Equ., 2024, 69(8), 1281–1319. doi: 10.1080/17476933.2023.2209730 |
[24] | F. M. Ye, S. B. Yu and C. L. Tang, Positive solutions for the fractional Kirchhoff type problem in exterior domains, Comput. Appl. Math., 2024, 43(4), 1–21. |