2025 Volume 15 Issue 6
Article Contents

Tingting Zhang, Ruyun Ma, Meng Yan. POSITIVE RADIAL SOLUTIONS FOR A SEMIPOSITONE PROBLEM OF ELLIPTIC KIRCHHOFF EQUATIONS WITH SUBLINEAR NONLINEARITIES[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3769-3781. doi: 10.11948/20250061
Citation: Tingting Zhang, Ruyun Ma, Meng Yan. POSITIVE RADIAL SOLUTIONS FOR A SEMIPOSITONE PROBLEM OF ELLIPTIC KIRCHHOFF EQUATIONS WITH SUBLINEAR NONLINEARITIES[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3769-3781. doi: 10.11948/20250061

POSITIVE RADIAL SOLUTIONS FOR A SEMIPOSITONE PROBLEM OF ELLIPTIC KIRCHHOFF EQUATIONS WITH SUBLINEAR NONLINEARITIES

  • We study the semipositone problem of the elliptic Kirchhoff type equation

    $ \begin{eqnarray}   \left\{ \begin{array}{cc} \begin{aligned} &-\Big(b\int_{\Omega_e}|\nabla u|^2dx\Big)\Delta u=\lambda K(|x|)f(u), \   \  &x\in B_e,\\ &u(x)=0, \    \ &|x|=r_0,\\ &u(x)\rightarrow0, \ \ &|x|\rightarrow \infty, \end{aligned} \end{array} \right. \end{eqnarray} $

    where$ b $is a positive constant,$ \lambda $is a positive parameter,$ B_e=\{x\in\mathbb{R}^N:\, |x|>r_0\} $,$ N>2 $,$ K : [r_0, +\infty) \to (0, +\infty) $is continuous with$  r^{N+\eta} K(r) $bounded for some$ \eta > 0 $,$ f : [0, +\infty) \to \mathbb{R} $is continuous,$ f(0)<0 $and$ \underset{u\to\infty}\lim\frac{f(u)}{u^q} =\beta $for some$ q\in (0, 1] $. We show that there exists$ \lambda^*>0 $, such that (0.1) has at least one positive radial solution if$ \lambda>\lambda^* $. The proof of the main result is based upon bifurcation theory.

    MSC: 34B10, 34B15, 34B18, 34C23, 35B09
  • 加载中
  • [1] I. Ali, A. Castro and R. Shivaji, Uniqueness and stability of nonnegative solutions for semipositone problems in a ball, Proc. Amer. Math. Soc., 1993, 117, 775–782. doi: 10.1090/S0002-9939-1993-1116249-5

    CrossRef Google Scholar

    [2] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 1976, 18(4), 620–709. doi: 10.1137/1018114

    CrossRef Google Scholar

    [3] A. Ambrosetti and D. Arcoya, Positive solutions of elliptic Kirchhoff equations, Adv. Nonlinear Stud., 2017, 17, 3–15. doi: 10.1515/ans-2016-6004

    CrossRef Google Scholar

    [4] A. Ambrosetti, D. Arcoya and B. Buffoni, Positive solutions for some semipositone problems via bifurcation theory, Differential Integral Equations, 1994, 7, 655–663.

    Google Scholar

    [5] H. Asakawa, Nonresonant singular two-point boundary value problems, Nonlinear Anal., 2001, 44(6), 791–809. doi: 10.1016/S0362-546X(99)00308-9

    CrossRef Google Scholar

    [6] X. F. Cao and G. W. Dai, Spectrum global bifurcation and nodal solutions to Kirchhoff-type equations, Electron. J. Differential Equations, 2018, 179, 1–10.

    Google Scholar

    [7] G. W. Dai, Some global results for a class of homogeneous nonlocal eigenvalue problems, Commun. Contemp. Math., 2019, 21(3), 1–23.

    Google Scholar

    [8] T. T. Dai, Z. Q. Ou, C. L. Tang and Y. Lv, Positive solutions of Kirchhoff type problems with critical growth on exterior domains, Anal. Math. Phys., 2024, 14(4), 1–32.

    Google Scholar

    [9] K. Deimling, Nonlinear Functional Analysis, Springer, New York, 1985.

    Google Scholar

    [10] G. M. Figueiredo and D. C. de Morais Filho, Existence of positive solution for indefinite Kirchhoff equation in exterior domains with subcritical or critical growth, J. Aust. Math. Soc., 2017, 103(3), 329–340. doi: 10.1017/S1446788716000574

    CrossRef Google Scholar

    [11] G. Figueiredo, C. Morales-Rodrigo, J. Santos and A. Suárez, Study of a nonlinear Kirchhoff equation with nonhomogeneous material, J. Math. Anal. Appl., 2014, 416, 597–608. doi: 10.1016/j.jmaa.2014.02.067

    CrossRef Google Scholar

    [12] J. R. Graef, D. Hebboul and T. Moussaoui, Existence of positive radial solutions to a p-Laplacian Kirchhoff type problem on the exterior of a ball, Opuscula Math., 2023, 43(1), 47–66. doi: 10.7494/OpMath.2023.43.1.47

    CrossRef Google Scholar

    [13] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Orlando, FL, 1988.

    Google Scholar

    [14] D. D. Hai and R. Shivaji, Positive radial solutions for a class of singular superlinear problems on the exterior of a ball with nonlinear boundary conditions, J. Math. Anal. Appl., 2017, 456(2), 872–881. doi: 10.1016/j.jmaa.2017.06.088

    CrossRef Google Scholar

    [15] Z. P. Liang, F. Y. Li and J. P. Shi, Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. Inst. Henri Poincaré, 2014, 31, 155–167. doi: 10.1016/j.anihpc.2013.01.006

    CrossRef Google Scholar

    [16] P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev., 1982, 24, 441–467. doi: 10.1137/1024101

    CrossRef Google Scholar

    [17] F. Liu, H. Luo and G. W. Dai, Global bifurcation and nodal solutions for homogeneous Kirchhoff type equations, Electron. J. Qual. Theory Differ. Equ., 2020, 29, 1–13.

    Google Scholar

    [18] R. Y. Ma, Connected component of positive solutions for singular superlinear semi-positone problems, Topol. Methods Nonlinear Anal., 2020, 55(1), 51–62.

    Google Scholar

    [19] G. Meng, P. Yan and M. Zhang, Spectrum of one-dimensional $p$-Laplacian with an indefinite integrable weight, Mediterr. J. Math., 2010, 7(2), 225–248. doi: 10.1007/s00009-010-0040-5

    CrossRef Google Scholar

    [20] K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 2006, 221(1), 246–255. doi: 10.1016/j.jde.2005.03.006

    CrossRef Google Scholar

    [21] T. Shibata, Bifurcation diagrams of one-dimensional Kirchhoff-type equations, Adv. Nonlinear Anal., 2023, 12(1), 356–368.

    Google Scholar

    [22] K. Silva, S. M. de Sousa, C. A. Santos and M. Yang, Multiplicity of solutions for Brezis-Oswald-type problems with indefinite Kirchhoff operators, Z. Angew. Math. Phys., 2023, 74(6), 1–20.

    Google Scholar

    [23] Y. Wang, R. Yuan and Z. H. Zhang, Positive solutions for Kirchhoff equation in exterior domains with small Sobolev critical perturbation, Complex Var. Elliptic Equ., 2024, 69(8), 1281–1319. doi: 10.1080/17476933.2023.2209730

    CrossRef Google Scholar

    [24] F. M. Ye, S. B. Yu and C. L. Tang, Positive solutions for the fractional Kirchhoff type problem in exterior domains, Comput. Appl. Math., 2024, 43(4), 1–21.

    Google Scholar

Article Metrics

Article views(56) PDF downloads(30) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint