2026 Volume 16 Issue 1
Article Contents

Minghui Liu, Jiqiang Jiang. EXISTENCE OF POSITIVE SOLUTIONS FOR COUPLED FRACTIONAL DIFFERENTIAL SYSTEM WITH IMPROPER INTEGRAL BOUNDARY CONDITIONS ON THE HALF-LINE[J]. Journal of Applied Analysis & Computation, 2026, 16(1): 396-425. doi: 10.11948/20250110
Citation: Minghui Liu, Jiqiang Jiang. EXISTENCE OF POSITIVE SOLUTIONS FOR COUPLED FRACTIONAL DIFFERENTIAL SYSTEM WITH IMPROPER INTEGRAL BOUNDARY CONDITIONS ON THE HALF-LINE[J]. Journal of Applied Analysis & Computation, 2026, 16(1): 396-425. doi: 10.11948/20250110

EXISTENCE OF POSITIVE SOLUTIONS FOR COUPLED FRACTIONAL DIFFERENTIAL SYSTEM WITH IMPROPER INTEGRAL BOUNDARY CONDITIONS ON THE HALF-LINE

  • This article is devoted to proving the existence of positive solutions for a class of coupled fractional boundary value problems involving an improper integral and the infinite-point on the half-line. By making use of the monotone iterative technique along with Banach's contraction mapping principle, some explicit monotone iterative sequences for approximating the extreme positive solutions and the unique positive solution for the problem are constructed, an error estimate formula of the positive solution is also given. In the end, a numerical simulation is given to illustrate the main results.

    MSC: 26A33, 34A08, 34A34, 34B10, 34B15, 34B18, 34B40
  • 加载中
  • [1] S. Abbas, S. Tyagi, P. Kumar, V. S. Ertürk and S. Momani, Stability and bifurcation analysis of a fractional-order model of cell-to-cell spread of hiv-1 with a discrete time delay, Math. Methods Appl. Sci., 2022, 45(11), 7081–7095. doi: 10.1002/mma.8226

    CrossRef Google Scholar

    [2] B. Ahmad and J. J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl., 2009, 58(9), 1838–1843. doi: 10.1016/j.camwa.2009.07.091

    CrossRef Google Scholar

    [3] S. Aljoudi, B. Ahmad, J. J. Nieto and A. Alsaedi, A coupled system of Hadamard type sequential fractional differential equations with coupled strip conditions, Chaos Solitons Fractals, 2016, 91, 39–46. doi: 10.1016/j.chaos.2016.05.005

    CrossRef Google Scholar

    [4] D. A. Benson, S. W. Wheatcraft and M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resour. Res., 2000, 36(6), 1403–1412. doi: 10.1029/2000WR900031

    CrossRef Google Scholar

    [5] T. S. Cerdik and F. Y. Deren, New results for higher-order Hadamard-type fractional differential equations on the half-line, Math. Methods Appl. Sci., 2022, 45(4), 2315–2330. doi: 10.1002/mma.7926

    CrossRef Google Scholar

    [6] X. Chen, W. Yang, X. Zhang and F. Liu, Unsteady boundary layer flow of viscoelastic mhd fluid with a double fractional maxwell model, Appl. Math. Lett., 2019, 95, 143–149. doi: 10.1016/j.aml.2019.03.036

    CrossRef Google Scholar

    [7] W. Cheng, J. Xu, Y. Cui and Q. Ge, Positive solutions for a class of fractional difference systems with coupled boundary conditions, Adv. Difference Equ., 2019, 2019, 249. DOI: 10.1186/s13662-019-2184-3.

    CrossRef Google Scholar

    [8] A. Deep and M. Kazemi, Solvability for 2D non-linear fractional integral equations by petryshyn's fixed point theorem, J. Comput. Appl. Math., 2024, 444, 115797. doi: 10.1016/j.cam.2024.115797

    CrossRef Google Scholar

    [9] J. Eggleston and S. Rojstaczer, Identification of large-scale hydraulic conductivity trends and the influence of trends on contaminant transport, Water Resour. Res., 1998, 34(9), 2155–2168. doi: 10.1029/98WR01475

    CrossRef Google Scholar

    [10] T. Jessada, S. K. Ntouyas, S. Asawasamrit and C. Promsakon, Positive solutions for Hadamard differential systems with fractional integral conditions on an unbounded domain, Open Math., 2017, 15(1), 645–666. doi: 10.1515/math-2017-0057

    CrossRef Google Scholar

    [11] J. Jiang and X. Sun, Existence of positive solutions for a class of p-Laplacian fractional differential equations with nonlocal boundary conditions, Bound. Value Probl., 2024, 2024, 97. DOI: 10.1186/s13661-024-01905-8.

    CrossRef Google Scholar

    [12] M. Kazemi, R. Ezzati and A. Deep, On the solvability of non-linear fractional integral equations of product type, J. Pseudo-Differ. Oper. Appl., 2023, 14(3), 39. doi: 10.1007/s11868-023-00532-8

    CrossRef Google Scholar

    [13] M. Kazemi, R. Rahul and A. Yaghoobnia, Applications of measure of noncompactness for solvability of Hadamard fractional integral equations, Comput. Appl. Math., 2025, 44, 30. doi: 10.1007/s40314-024-03005-w

    CrossRef Google Scholar

    [14] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam, Elsevier, 2006.

    Google Scholar

    [15] S, Li, Z. Zhang and W. Jiang, Multiple positive solutions for four-point boundary value problem of fractional delay differential equations with p-Laplacian operator, Appl. Numer. Math., 2021, 165, 348–356. doi: 10.1016/j.apnum.2021.03.001

    CrossRef Google Scholar

    [16] Y. Li, S. Bai and D. O'Regan, Monotone iterative positive solutions for a fractional differential system with coupled Hadamard type fractional integral conditions, J. Appl. Anal. Comput., 2023, 13(3), 1556–1580.

    Google Scholar

    [17] R. Luca and A. Tudorache, Existence of solutions for a Hadamard fractional boundary value problem at resonance, Fractal Fract., 2025, 9(2), 119. doi: 10.3390/fractalfract9020119

    CrossRef Google Scholar

    [18] M. Moghaddamfar, M. Kazemi and R. Ezzati, Existence results for generalized 2D fractional partial integro-differential equations, J. Comput. Appl. Math., 2026, 471, 116705. doi: 10.1016/j.cam.2025.116705

    CrossRef Google Scholar

    [19] N. Nyamoradi and B. Ahmad, Hadamard fractional differential equations on an unbounded domain with integro-initial conditions, Qual. Theory Dyn. Syst., 2024, 23(4), 183. doi: 10.1007/s12346-024-01044-6

    CrossRef Google Scholar

    [20] K. Pei, G, Wang and Y. Sun, Successive iterations and positive extremal solutions for a Hadamard type fractional integro-differential equations on infinite domain, Appl. Math. Comput., 2017, 312, 158–168.

    Google Scholar

    [21] R. Poovarasan and V. Govindaraj, Existence of solutions for a coupled system of ψ-Caputo fractional differential equations with integral boundary conditions, Math. Methods Appl. Sci., 2025, 48(9), 9456–9468. doi: 10.1002/mma.10810

    CrossRef Google Scholar

    [22] J. Sabatier, O. P. Agrawal and J. T. Machado, Advances in Fractional Calculus, Volume 4, Springer, 2007.

    Google Scholar

    [23] X. Su and S. Zhang, Unbounded solutions to a boundary value problem of fractional order on the half-line, Comput. Math. Appl., 2011, 61(4), 1079–1087. doi: 10.1016/j.camwa.2010.12.058

    CrossRef Google Scholar

    [24] P. Thiramanus, S. K. Ntouyas and J. Tariboon, Positive solutions for Hadamard fractional differential equations on infinite domain, Adv. Difference Equ., 2016, 2016, 83. DOI: 10.1186/s13662-016-0813-7.

    CrossRef Google Scholar

    [25] G. Wang, K. Pei, R. P. Agarwal, L. Zhang and B. Ahmad, Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line, J. Comput. Appl. Math., 2018, 343, 230–239. doi: 10.1016/j.cam.2018.04.062

    CrossRef Google Scholar

    [26] N. Wang and Z. Zhou, Multiple positive solutions of fractional differential equations with improper integral boundary conditions on the half-line, Bound. Value Probl., 2023, 2023, 88. DOI: 10.1186/s13661-023-01777-4.

    CrossRef Google Scholar

    [27] Y. Wang and H. Wang, Triple positive solutions for fractional differential equation boundary value problems at resonance, Appl. Math. Lett., 2020, 106, 106376. doi: 10.1016/j.aml.2020.106376

    CrossRef Google Scholar

    [28] D. Yang and K. Zhu, Start-up flow of a viscoelastic fluid in a pipe with a fractional maxwell's model, Comput. Math. Appl., 2010, 60(8), 2231–2238. doi: 10.1016/j.camwa.2010.08.013

    CrossRef Google Scholar

    [29] H. Zhang, Y. Wang and J. Xu, Explicit monotone iterative sequences for positive solutions of a fractional differential system with coupled integral boundary conditions on a half-line, Adv. Difference Equ., 2020, 2020, 396. DOI: 10.1186/s13662-020-02860-1.

    CrossRef Google Scholar

    [30] L. Zhang, X. Liu, Z. Yu and M. Jia, The existence of positive solutions for high order fractional differential equations with sign changing nonlinearity and parameters, AIMS Math., 2023, 8(11), 25990–26006. doi: 10.3934/math.20231324

    CrossRef Google Scholar

    [31] W. Zhang and J. Ni, New multiple positive solutions for Hadamard-type fractional differential equations with nonlocal conditions on an infinite interval, Appl. Math. Lett., 2021, 118, 107165. doi: 10.1016/j.aml.2021.107165

    CrossRef Google Scholar

    [32] X. Zhang, D. Kong, H. Tian, Y. Wu and B. Wiwatanapataphee, An upper-lower solution method for the eigenvalue problem of Hadamard-type singular fractional differential equation, Nonlinear Anal. Model. Control, 2022, 27(4), 789–802.

    Google Scholar

    [33] X. Zhang and Q. Zhong, Triple positive solutions for nonlocal fractional differential equations with singularities both on time and space variables, Appl. Math. Lett., 2018, 80, 12–19. doi: 10.1016/j.aml.2017.12.022

    CrossRef Google Scholar

Figures(2)  /  Tables(2)

Article Metrics

Article views(48) PDF downloads(17) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint