2026 Volume 16 Issue 1
Article Contents

Huan Dai, Mengfeng Sun. THE ASYMPTOTIC BOUNDS OF SOLUTIONS OF A GENERALIZED PANTOGRAPH EQUATION[J]. Journal of Applied Analysis & Computation, 2026, 16(1): 380-395. doi: 10.11948/20250064
Citation: Huan Dai, Mengfeng Sun. THE ASYMPTOTIC BOUNDS OF SOLUTIONS OF A GENERALIZED PANTOGRAPH EQUATION[J]. Journal of Applied Analysis & Computation, 2026, 16(1): 380-395. doi: 10.11948/20250064

THE ASYMPTOTIC BOUNDS OF SOLUTIONS OF A GENERALIZED PANTOGRAPH EQUATION

  • This paper studies the asymptotic behavior of solutions of the generalized pantograph equation $ y'(t)=Ay(qt)+By(t)+Cy'(qt) $, where $ A, B, C $ are $ n×n $ complex matrices. By considering two cases of the coefficient matrix $ B $: Diagonalizable and non-diagonalizable, the asymptotic boundaries of solutions are discussed, respectively. When $ B $ is diagonalizable, the asymptotic boundary of solutions is dominated by the largest positive real part of the eigenvalues: If the smallest positive real part of eigenvalues exceeds the product of the delay parameter and the largest positive real part, then the components of solutions grow exponentially according to the corresponding eigenvalues, otherwise, all solutions are constrained by the largest positive real part of eigenvalues. When $ B $ cannot be diagonalized, the asymptotic boundary of solutions depends on the distribution of eigenvalues: If $ B $ has a unique multiple eigenvalue, then the real part of this eigenvalue determines the growth rate of solutions, otherwise, the components of solutions grow exponentially according to the corresponding eigenvalues in the Jordan blocks. Hence, every solution has an exponential asymptotic boundary, which depends on the eigenvalues of the coefficient matrix $ B $.

    MSC: 34K10, 34K25, 34K30
  • 加载中
  • [1] I. Ahmad, R. Amin, T. Abdeljawad and K. Shah, A numerical method for fractional pantograph delay integro-differential equations on haar wavelet, Int. J. Appl. Comput. Math., 2021, 7, 1–13. doi: 10.1007/s40819-020-00933-z

    CrossRef Google Scholar

    [2] H. Alrabaiah, I. Ahmad, K. Shah and G. Rahman, Qualitative analysis of nonlinear coupled pantograph differential equations of fractional order with integral boundary conditions, Bound. Value Probl., 2020, 2020, 1–13. doi: 10.1186/s13661-019-01311-5

    CrossRef Google Scholar

    [3] R. Alrebdi and H. Al-Jeaid, Two different analytical approaches for solving the pantograph delay equation with variable coefficient of exponential order, Axioms, 2024, 13(4), 229. doi: 10.3390/axioms13040229

    CrossRef Google Scholar

    [4] N. Barrouk and S. Mesbahi, Existence of global solutions of a reaction-diffusion system with a cross-diffusion matrix and fractional derivatives, Palest. J. Math., 2024, 13(3), 340–353.

    Google Scholar

    [5] M. Bohner, J. R. Graef and I. Jadlovská, Asymptotic properties of Kneser solutions to third-order delay differential equations, J. Appl. Anal. Comput., 2022, 12(5), 2024–2032.

    Google Scholar

    [6] M. Buhmann and A. Iserles, Stability of the discretized pantograph differential equation, Math. Comput., 1993, 60(202), 575–589. doi: 10.1090/S0025-5718-1993-1176707-2

    CrossRef Google Scholar

    [7] L. Fox, D. Mayers, J. Ockendon and A. Tayler, On a functional differential equation, IMA J. Appl. Math., 1971, 8(3), 271–307. doi: 10.1093/imamat/8.3.271

    CrossRef Google Scholar

    [8] J. Graef, I. Jadlovská and E. Tunç, Sharp asymptotic results for third-order linear delay differential equations, J. Appl. Anal. Comput., 2021, 11(5), 2459–2472.

    Google Scholar

    [9] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.

    Google Scholar

    [10] P. Höfer and A. Lion, Modelling of frequency-and amplitude-dependent material properties of filler-reinforced rubber, J. Mech. Phys. Solids, 2009, 57(3), 500–520. doi: 10.1016/j.jmps.2008.11.004

    CrossRef Google Scholar

    [11] M. Houas, K. Kaushik, A. Kumar, A. Khan and T. Abdeljawad, Existence and stability results of pantograph equation with three sequential fractional derivatives, AIMS Math., 2023, 8(3), 5216–5232.

    Google Scholar

    [12] A. Iserles, On the generalized pantograph functional-differential equation, Eur. J. Appl. Math., 1993, 4(1), 1–38. doi: 10.1017/S0956792500000966

    CrossRef Google Scholar

    [13] A. Iserles and Y. Liu, On pantograph integro-differential equations, J. Integral Equ. Appl., 1994, 213–237.

    Google Scholar

    [14] T. Jüngling, X. Porte, N. Oliver, M. Soriano and I. Fischer, A unifying analysis of chaos synchronization and consistency in delay-coupled semiconductor lasers, IEEE J. Sel. Top. Quant., 2019, 25(6), 1–9.

    Google Scholar

    [15] T. Kato and J. B. Mcleod, The functional-differential equation y′(x) = ay(λx) + by(x), B. Am. Math. Soc., 1971, 77(4), 21–22.

    Google Scholar

    [16] E. Lim, Asymptotic behavior of solutions of the functional differential equation x′(t) = Ax(λt) + Bx(t), λ > 0, J. Math. Anal. Appl., 1976, 55(3), 794–806. doi: 10.1016/0022-247X(76)90082-2

    CrossRef Google Scholar

    [17] W. Lu, T. Chen and G. Chen, Synchronization analysis of linearly coupled systems described by differential equations with a coupling delay, Physica D, 2006, 221(2), 118–134. doi: 10.1016/j.physd.2006.07.020

    CrossRef Google Scholar

    [18] T. Nabil, Solvability of nonlinear coupled system of urysohn-volterra quadratic integral equations in generalized banach algebras, J. Fract. Calc. Nonlin. Syst., 2024, 5(2), 16–32.

    Google Scholar

    [19] J. Ockendon and A. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. R. Soc. Lond. A‌, 1971, 322(1551), 447–468. doi: 10.1098/rspa.1971.0078

    CrossRef Google Scholar

    [20] F. Rihan, Continuous Runge-Kutta schemes for pantograph type delay differential equations, J. Partial Differ. Equ. Appl. Math. ‌, 2024, 11, 100797.

    Google Scholar

    [21] K. Shah, I. Ahmad, J. Nieto, G. Rahman and T. Abdeljawad, Qualitative investigation of nonlinear fractional coupled pantograph impulsive differential equations, Qual. Theor. Dyn. Syst., 2022, 21(4), 131. doi: 10.1007/s12346-022-00665-z

    CrossRef Google Scholar

    [22] N. Sriwastav, A. Barnwal, A. Wazwaz and M. Singh, A novel numerical approach and stability analysis for a class of pantograph delay differential equation, J. Comput. Sci-Neth., 2023, 67, 101976. doi: 10.1016/j.jocs.2023.101976

    CrossRef Google Scholar

    [23] C. Zhang, Analytical study of the pantograph equation using Jacobi theta functions, J. Approx. Theory, 2023, 296, 105974. doi: 10.1016/j.jat.2023.105974

    CrossRef Google Scholar

Figures(4)

Article Metrics

Article views(81) PDF downloads(35) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint