2019 Volume 9 Issue 4
Article Contents

Zhanbing Bai, Zengji Du, Shuo Zhang. ITERATIVE METHOD FOR A CLASS OF FOURTH-ORDER P-LAPLACIAN BEAM EQUATION[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1443-1453. doi: 10.11948/2156-907X.20180276
Citation: Zhanbing Bai, Zengji Du, Shuo Zhang. ITERATIVE METHOD FOR A CLASS OF FOURTH-ORDER P-LAPLACIAN BEAM EQUATION[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1443-1453. doi: 10.11948/2156-907X.20180276

ITERATIVE METHOD FOR A CLASS OF FOURTH-ORDER P-LAPLACIAN BEAM EQUATION

  • Corresponding author: Email address:zhanbingbai@163.com (Z. Bai) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (11571207), National Science Foundation of Shandong (ZR2018MA011) and the Taishan Scholar project
  • This paper considers the existence of the solutions for a class of fourth-order p-Laplacian. The boundary value problem considered can describe the tiny deformation of an elastic beam. By using a novel efficient iteration method, the existence and uniqueness result of solution for the problem is obtained. An example is given to illustrate the main results.
    MSC: 34B15, 34B18
  • 加载中
  • [1] P. Agarwal, H. Lü and D. ORegan, Positive solutions for the boundary value problem (|u"|p-2u")"-λq(t)f(u(t)) = 0, Mem. Differential Equations Math. Phys., 2003, 28, 33-44.

    p-2u")"-λq(t)f(u(t)) = 0" target="_blank">Google Scholar

    [2] K. Bachouche, A. Benmezai and S. Djebali, Positive solutions to semi-positone fourth-order φ-Laplacian BVPs, Positivity, 2017, 21, 193-212. doi: 10.1007/s11117-016-0415-3

    CrossRef Google Scholar

    [3] Z. Bai, Positive solutions of some nonlocal fourth-order boundary value problem, Appl. Math. Comput., 2010, 215, 4191-4197.

    Google Scholar

    [4] Z. Bai, Y. Chen, H. Lian and S. Sun, On the existence of blow up solutions for a class of fractional differential equations, Fract. Calc. Appl. Anal., 2014, 17(4), 1175-1187.

    Google Scholar

    [5] Z. Bai, W. Ge and Y. Wang, Multiplicity results for some second-order fourpoint boundary-value problems, Nonlinear Anal.-Theor., 2005, 60, 491-500.

    Google Scholar

    [6] Z. Bai, B. Huang and W. Ge, The iterative solutions for some fourth-order p-Laplace equation boundary value problem, Appl. Math. Lett., 2006, 19, 8-14. doi: 10.1016/j.aml.2004.10.010

    CrossRef Google Scholar

    [7] Z. Bai and Y. Zhang, Solvability of fractional three-point boundary value problems with nonlinear growth, Appl. Math. Comput., 2011, 218(5), 1719-1725.

    Google Scholar

    [8] F. Bernis, Compactness of the support in convex and non-convex fourth order elasticity problems, Nonlinear Anal.-Theor., 1982, 6, 1221-1243. doi: 10.1016/0362-546X(82)90032-3

    CrossRef Google Scholar

    [9] C. Chen, H. Song and H. Yang, Liouville type theorems for stable solutions of p-Laplace equation in Rn, Nonlinear Anal.-Theor., 2017, 160, 44-52. doi: 10.1016/j.na.2017.05.004

    CrossRef Google Scholar

    [10] Y. Cui and J. Sun, Existence of multiple positive solutions for fourth-order boundary value problems in Banach spaces, Bound. Value Probl., 2012. DOI: 10.1186/1687-2770-2012-107.

    CrossRef Google Scholar

    [11] Y. Cui and J. Sun, A generalization of Mahadevan's version of the KreinRutman theorem and applications to p-Laplacian boundary value problems, Abstr. Appl. Anal., 2012. DOI: 10.1155/2012/305279.

    CrossRef Google Scholar

    [12] Y. Cui and Y. Zou, Existence and uniqueness theorems for fourth-order singular boundary value problems, Comp. Math. Appl., 2009, 58, 1449-1456. doi: 10.1016/j.camwa.2009.07.041

    CrossRef Google Scholar

    [13] Q. A. Dang, Q. L. Dang and N. Quy, A novel efficient method for nonlinear boundary value problems, Numerical Algorithms, 2017, 76, 427-439. doi: 10.1007/s11075-017-0264-6

    CrossRef Google Scholar

    [14] Q.A Dang and N. Quy, Existence results and iterative method for solving the cantilever beam equation with fully nonlinear term, Nonlinear Anal.-Real., 2017, 36, 56-68. doi: 10.1016/j.nonrwa.2017.01.001

    CrossRef Google Scholar

    [15] X. Dong, Z. Bai and S. Zhang, Positive solutions to boundary value problems of p-Laplacian with fractional derivative, Bound. Value Probl., 2017. DOI: 10.1186/s13661-016-0735-z.

    CrossRef Google Scholar

    [16] M. Feng, P. Li and S. Sun, Symmetric positive solutions for fourthorder n-dimensional m-Laplace systems, Bound. Value Probl., 2018. DOI: 10.1186/s13661-018-0981-3.

    CrossRef Google Scholar

    [17] Y. Guo and W. Ge, Positive solutions for three-point boundary value problems with dependence on the first order derivative, J. Math. Anal. Appl., 2004, 290, 291-301. doi: 10.1016/j.jmaa.2003.09.061

    CrossRef Google Scholar

    [18] C. Gupta, Existence and uniqueness results for the bending of an elastic beam equation at resonance, J. Math. Anal. Appl., 1998, 135, 208-225.

    Google Scholar

    [19] M. Guo, C. Fu, Y. Zhang, J. Liu and H. Yang, Study of ion-acoustic solitary waves in a magnetized plasma using the three-dimensional time-space fractional schamel-KdV equation, Complexity, 2018. DOI: 10.1155/2018/6852548.

    CrossRef Google Scholar

    [20] H. Li and J. Sun, Positive solutions of superlinear semipositone nonlinear boundary value problems, Comp. Math. Appl., 2011, 61, 2806-2815. doi: 10.1016/j.camwa.2011.03.051

    CrossRef Google Scholar

    [21] Y. Li, Existence of nontrivial solutions for unilaterally asymptotically linear three-point boundary value problems, Abstr. Appl. Anal., 2014. DOI: 10.1155/2014/263042.

    CrossRef Google Scholar

    [22] Y. Li, A monotone iterative technique for solving the bending elastic beam equations, Appl. Math. Comput., 2010, 217, 2200-2208.

    Google Scholar

    [23] Y. Li, Existence of positive solutions for the cantilever beam equations with fully nonlinear terms, Nonlinear Anal.-Real., 2016, 27, 221-237. doi: 10.1016/j.nonrwa.2015.07.016

    CrossRef Google Scholar

    [24] H. Lian, D. Wang, Z. Bai and R. Agarwal, Periodic and subharmonic solutions for a class of second-order p-Laplacian Hamiltonian systems, Bound. Value Probl., 2014. DOI: 10.1186/s13661-014-0260-x.

    CrossRef Google Scholar

    [25] R. Ma, J. Zhang and S. Fu, The method of lower and upper solutions for fourth-order two-point boundary value problem, J. Math. Anal. Appl., 1997, 215, 415-422. doi: 10.1006/jmaa.1997.5639

    CrossRef Google Scholar

    [26] Y. Pang and Z. Bai, Upper and lower solution method for a fourth-order fourpoint boundary value problem on time scales, Appl. Math. Comput., 2009, 215, 6, 2243-2247.

    Google Scholar

    [27] K. Sheng, W. Zhang, Z. Bai, Positive solutions to fractional boundary value problems with p-Laplacian on time scales, Bound. Value Probl., 2018. DOI: 10.1186/s13661-018-0990-2.

    CrossRef Google Scholar

    [28] Q. Song and Z. Bai, Positive solutions of fractional differential equations involving the Riemann-Stieltjes integral boundary condition, Adv. Differ. Equ-NY, 2018. DOI: 10.1186/s13662-018-1633-8.

    CrossRef Google Scholar

    [29] Y. Tian, S. Sun and Z. Bai, Positive solutions of fractional differential equations with p-Laplacian, J. Funct. Space, 2017. DOI: 10.1155/2017/3187492.

    CrossRef Google Scholar

    [30] Y. Tian, Y. Wei and S. Sun, Multiplicity for fractional differential equations with p-Laplacian, Bound. Value Probl., 2018. DOI: 10.1186/s13661-018-1049-0.

    CrossRef Google Scholar

    [31] Z. Wang, Y. Xie, J. Lu and Y. Li, Stability and bifurcation of a delayed generalized fractional-order prey-predator model with interspecific competition, Appl. Math. Comput., 2019, 347, 360-369.

    Google Scholar

    [32] Y. Wei, Q. Song and Z. Bai, Existence and iterative method for some fourth order nonlinear boundary value problems, Appl. Math. Lett., 2019, 87, 101-107. doi: 10.1016/j.aml.2018.07.032

    CrossRef Google Scholar

    [33] P. Yan, Nonresonance for one-dimensional p-Laplacian with regular restoring, J. Math. Anal. Appl., 2003, 285, 141-154. doi: 10.1016/S0022-247X(03)00383-4

    CrossRef Google Scholar

    [34] J. Zhang, G. Zhang and H. Li, Positive solutions of second-order problem with dependence on derivative in nonlinearity under Stieltjes integral boundary condition, Electron. J. Qual. Theo., 2018. DOI: 10.14232/ejqtde.2018.1.4.

    CrossRef Google Scholar

    [35] X. Zhang and Y. Cui, Positive solutions for fourth-order singular p-Laplacian differential equations with integral boundary conditions, Bound. Value Probl., 2010. DOI: 10.1155/2010/862079.

    CrossRef Google Scholar

    [36] X. Zhang, L. Liu, Y. Wu and Y. Cui, Entire blow-up solutions for a quasilinear p-Laplacian Schrödinger equation with a non-square diffusion term, Appl. Math. Lett., 2017, 74, 85-93. doi: 10.1016/j.aml.2017.05.010

    CrossRef Google Scholar

    [37] Y. Zhang, Existence results for a coupled system of nonlinear fractional multipoint boundary value problems at resonance, J. Inequal. Appl. 2018. DOI: 10.1186/s13660-018-1792-x.

    CrossRef Google Scholar

    [38] Y. Zou, On the existence of positive solutions for a fourth-order boundary value problem, J. Funct. Space, 2017. DOI: 10.1155/2017/4946198.

    CrossRef Google Scholar

    [39] Y. Zou and Y. Cui, Uniqueness result for the cantilever beam equation with fully nonlinear term, J. Nonlinear. Sci. App., 2017, 10, 4734-4740. doi: 10.22436/jnsa

    CrossRef Google Scholar

    [40] Y. Zou and G. He, Fixed point theorem for systems of nonlinear operator equations and applications to (p1, p2)-Laplacian system, Mediterr. J. Math., 2018. DOI: 10.1007/s00009-018-1119-7.

    CrossRef Google Scholar

Figures(2)  /  Tables(2)

Article Metrics

Article views(4041) PDF downloads(719) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint