2019 Volume 9 Issue 4
Article Contents

Elgiz Bairamov, Serifenur Cebesoy, Ibrahim Erdal. PROPERTIES OF EIGENVALUES AND SPECTRAL SINGULARITIES FOR IMPULSIVE QUADRATIC PENCIL OF DIFFERENCE OPERATORS[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1454-1469. doi: 10.11948/2156-907X.20180280
Citation: Elgiz Bairamov, Serifenur Cebesoy, Ibrahim Erdal. PROPERTIES OF EIGENVALUES AND SPECTRAL SINGULARITIES FOR IMPULSIVE QUADRATIC PENCIL OF DIFFERENCE OPERATORS[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1454-1469. doi: 10.11948/2156-907X.20180280

PROPERTIES OF EIGENVALUES AND SPECTRAL SINGULARITIES FOR IMPULSIVE QUADRATIC PENCIL OF DIFFERENCE OPERATORS

  • In this paper, we investigate the spectral analysis of impulsive quadratic pencil of difference operators. We first present a boundary value problem consisting one interior impulsive point on the whole axis corresponding to the above mentioned operator. After introducing the solutions of impulsive quadratic pencil of difference equation, we obtain the asymptotic equation of the function related to the Wronskian of these solutions to be helpful for further works, then we determine resolvent operator and continuous spectrum. Finally, we provide sufficient conditions guarenteeing finiteness of eigenvalues and spectral singularities by means of uniqueness theorems of analytic functions. The main aim of this paper is demonstrating the impulsive quadratic pencil of difference operator is of finite number of eigenvalues and spectral singularities with finite multiplicities which is an uninvestigated problem proposed in the literature.
    MSC: 39A10, 39A13, 47B39, 58C40
  • 加载中
  • [1] M. Adıvar, Quadratic pencil of difference equations: jost solutions, spectrum, and principal vectors, Quaest. Math., 2010, 33(3), 305–323. doi: 10.2989/16073606.2010.507323

    CrossRef Google Scholar

    [2] M. Adıvar and E. Bairamov, Difference equations of second order with spectral singularities, J. Math. Anal. Appl., 2003, 277(2), 714–721. doi: 10.1016/S0022-247X(02)00655-8

    CrossRef Google Scholar

    [3] M. Adıvar and E. Bairamov, Spectral properties of non-selfadjoint difference operators, J. Math. Anal. and Appl., 2001, 261(2), 461–478. doi: 10.1006/jmaa.2001.7532

    CrossRef Google Scholar

    [4] M. Adıvar and M. Bohner, Spectral analysis of q-difference equations with spectral singularities, Math. Comput. Modelling, 2006, 43(7-8), 695–703. doi: 10.1016/j.mcm.2005.04.014

    CrossRef Google Scholar

    [5] K. Aydemir, H. Olǧar and O.Sh. Mukhtarov, Differential operator equations with interface conditions in modified direct sum spaces, Filomat, 2018, 32(3), 921–931. doi: 10.2298/FIL1803921A

    CrossRef Google Scholar

    [6] Y. Aygar and E. Bairamov, Jost solution and the spectral properties of the matrix-valued difference operators, Appl. Math. Comput., 2012, 218(19), 9676–9681.

    Google Scholar

    [7] E. Bairamov, O. Cakar and A. O. Celebi, Quadratic pencil of Schrödinger operators with spectral singularities: discrete spectrum and principal functions, J. Math. Anal. Appl., 1997, 216(1), 303–320. doi: 10.1006/jmaa.1997.5689

    CrossRef Google Scholar

    [8] E. Bairamov, O. Cakar and A.M. Krall, Non-selfadjoint difference operators and Jacobi matrices with spectral singularities, Math. Nachr., 2001, 229, 5–14. doi: 10.1002/(ISSN)1522-2616

    CrossRef Google Scholar

    [9] E. Bairamov, O. Cakar and A. M. Krall, An eigenfunction expansion for a quadratic pencil of a Schrödinger operator with spectral singularities, J. Differential Equations, 1999, 151(2), 268–289. doi: 10.1006/jdeq.1998.3518

    CrossRef Google Scholar

    [10] E. Bairamov, S. Cebesoy, Spectral singularities of the matrix Schrödinger equations, Hacet. J. Math. Stat., 2016, 45(4), 1007–1014.

    Google Scholar

    [11] E. Bairamov, I. Erdal and S. Yardimci, Spectral properties of an impulsive Sturm–Liouville operator, J. Inequal. Appl., 2018, 191, 16 pp.

    Google Scholar

    [12] Y. M. Berezanski, Expansion in Eigenfunctions of Self-adjoint Operators, Amer.Math. Soc., Providence, 1968.

    Google Scholar

    [13] E. P. Dolzhenko, Boundary value uniqueness theorems for analytic functions, Math. Notes, 1979, 26, 437–442.

    Google Scholar

    [14] G. S. Guseinov, The inverse problem of scattering theory for a second-order difference equation, Sov. Math. Dokl., 1976, 230, 1045–1048.

    Google Scholar

    [15] A.M. Krall, E. Bairamov, and O. Cakar, Spectral analysis of a non-selfadjoint discrete Schrödinger operators with spectral singularities, Math. Nachr., 2001, 231, 89–104. doi: 10.1002/(ISSN)1522-2616

    CrossRef Google Scholar

    [16] A. M. Krall, E. Bairamov and O. Cakar, Spectrum and spectral singularities of a quadratic pencil of a Schrödinger operator with a general boundary condition, J. Differential Equations, 1999, 151(2), 252–267. doi: 10.1006/jdeq.1998.3519

    CrossRef Google Scholar

    [17] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific Publishing Co., Inc., Teaneck, NJ, 1989.

    Google Scholar

    [18] B. M. Levitan and I. S. Sargsjan, Sturm–Liouville and Dirac Operators, Kluwer Academic Publishers Group, Dordrecht, 1991.

    Google Scholar

    [19] B. Li and H. Gou, Monotone iterative method for the periodic boundary value problems of impulsive evolution equations in Banach spaces, Chaos Solitons Fractals, 2018, 110, 209–215. doi: 10.1016/j.chaos.2018.03.027

    CrossRef Google Scholar

    [20] V. A. Marchenko, Sturm–Liouville Operators and Applications, Birkhäuser Verlag, Basel, 1986.

    Google Scholar

    [21] A. Mostafazadeh, Point interactions, metamaterials, and $\mathcal{PT}$-symmetry, Ann. Physics., 2016, 368, 56–69. doi: 10.1016/j.aop.2016.01.025

    CrossRef $\mathcal{PT}$-symmetry" target="_blank">Google Scholar

    [22] O. Mukhtarov, M. Kadakal and F. S. Mukhtarov, On discontinuous Sturm–Liouville problems with transmission conditions, J. Math. Kyoto Univ., 2004, 44(4), 779–798. doi: 10.1215/kjm/1250281698

    CrossRef Google Scholar

    [23] M. A. Naimark, Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint differential operator of the second order on a semi-axis, Amer. Math. Soc. Transl. (2), 1960, 16, 103–193.

    Google Scholar

    [24] N. A. Perestyuk, V. A. Plotnikov, A. M. Samoilenko and N. V. Skripnik, Differential Equations with Impulse Effects, Walter de Gruyter & Co., Berlin, 2011.

    Google Scholar

    [25] A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1995.

    Google Scholar

    [26] E. Ugurlu, Dirac systems with regular and singular transmission effects, Turkish J. Math., 2017, 41(1), 193–210.

    Google Scholar

    [27] P. Wang and W. Wang, Anti-periodic boundary value problem for first order impulsive delay difference equations, Adv. Difference Equ., 2015, 93, 13 pp.

    Google Scholar

Article Metrics

Article views(2745) PDF downloads(735) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint