Citation: | Elgiz Bairamov, Serifenur Cebesoy, Ibrahim Erdal. PROPERTIES OF EIGENVALUES AND SPECTRAL SINGULARITIES FOR IMPULSIVE QUADRATIC PENCIL OF DIFFERENCE OPERATORS[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1454-1469. doi: 10.11948/2156-907X.20180280 |
[1] | M. Adıvar, Quadratic pencil of difference equations: jost solutions, spectrum, and principal vectors, Quaest. Math., 2010, 33(3), 305–323. doi: 10.2989/16073606.2010.507323 |
[2] | M. Adıvar and E. Bairamov, Difference equations of second order with spectral singularities, J. Math. Anal. Appl., 2003, 277(2), 714–721. doi: 10.1016/S0022-247X(02)00655-8 |
[3] | M. Adıvar and E. Bairamov, Spectral properties of non-selfadjoint difference operators, J. Math. Anal. and Appl., 2001, 261(2), 461–478. doi: 10.1006/jmaa.2001.7532 |
[4] | M. Adıvar and M. Bohner, Spectral analysis of q-difference equations with spectral singularities, Math. Comput. Modelling, 2006, 43(7-8), 695–703. doi: 10.1016/j.mcm.2005.04.014 |
[5] | K. Aydemir, H. Olǧar and O.Sh. Mukhtarov, Differential operator equations with interface conditions in modified direct sum spaces, Filomat, 2018, 32(3), 921–931. doi: 10.2298/FIL1803921A |
[6] | Y. Aygar and E. Bairamov, Jost solution and the spectral properties of the matrix-valued difference operators, Appl. Math. Comput., 2012, 218(19), 9676–9681. |
[7] | E. Bairamov, O. Cakar and A. O. Celebi, Quadratic pencil of Schrödinger operators with spectral singularities: discrete spectrum and principal functions, J. Math. Anal. Appl., 1997, 216(1), 303–320. doi: 10.1006/jmaa.1997.5689 |
[8] | E. Bairamov, O. Cakar and A.M. Krall, Non-selfadjoint difference operators and Jacobi matrices with spectral singularities, Math. Nachr., 2001, 229, 5–14. doi: 10.1002/(ISSN)1522-2616 |
[9] | E. Bairamov, O. Cakar and A. M. Krall, An eigenfunction expansion for a quadratic pencil of a Schrödinger operator with spectral singularities, J. Differential Equations, 1999, 151(2), 268–289. doi: 10.1006/jdeq.1998.3518 |
[10] | E. Bairamov, S. Cebesoy, Spectral singularities of the matrix Schrödinger equations, Hacet. J. Math. Stat., 2016, 45(4), 1007–1014. |
[11] | E. Bairamov, I. Erdal and S. Yardimci, Spectral properties of an impulsive Sturm–Liouville operator, J. Inequal. Appl., 2018, 191, 16 pp. |
[12] | Y. M. Berezanski, Expansion in Eigenfunctions of Self-adjoint Operators, Amer.Math. Soc., Providence, 1968. |
[13] | E. P. Dolzhenko, Boundary value uniqueness theorems for analytic functions, Math. Notes, 1979, 26, 437–442. |
[14] | G. S. Guseinov, The inverse problem of scattering theory for a second-order difference equation, Sov. Math. Dokl., 1976, 230, 1045–1048. |
[15] | A.M. Krall, E. Bairamov, and O. Cakar, Spectral analysis of a non-selfadjoint discrete Schrödinger operators with spectral singularities, Math. Nachr., 2001, 231, 89–104. doi: 10.1002/(ISSN)1522-2616 |
[16] | A. M. Krall, E. Bairamov and O. Cakar, Spectrum and spectral singularities of a quadratic pencil of a Schrödinger operator with a general boundary condition, J. Differential Equations, 1999, 151(2), 252–267. doi: 10.1006/jdeq.1998.3519 |
[17] | V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific Publishing Co., Inc., Teaneck, NJ, 1989. |
[18] | B. M. Levitan and I. S. Sargsjan, Sturm–Liouville and Dirac Operators, Kluwer Academic Publishers Group, Dordrecht, 1991. |
[19] | B. Li and H. Gou, Monotone iterative method for the periodic boundary value problems of impulsive evolution equations in Banach spaces, Chaos Solitons Fractals, 2018, 110, 209–215. doi: 10.1016/j.chaos.2018.03.027 |
[20] | V. A. Marchenko, Sturm–Liouville Operators and Applications, Birkhäuser Verlag, Basel, 1986. |
[21] |
A. Mostafazadeh, Point interactions, metamaterials, and $\mathcal{PT}$-symmetry, Ann. Physics., 2016, 368, 56–69. doi: 10.1016/j.aop.2016.01.025
CrossRef $\mathcal{PT}$-symmetry" target="_blank">Google Scholar |
[22] | O. Mukhtarov, M. Kadakal and F. S. Mukhtarov, On discontinuous Sturm–Liouville problems with transmission conditions, J. Math. Kyoto Univ., 2004, 44(4), 779–798. doi: 10.1215/kjm/1250281698 |
[23] | M. A. Naimark, Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint differential operator of the second order on a semi-axis, Amer. Math. Soc. Transl. (2), 1960, 16, 103–193. |
[24] | N. A. Perestyuk, V. A. Plotnikov, A. M. Samoilenko and N. V. Skripnik, Differential Equations with Impulse Effects, Walter de Gruyter & Co., Berlin, 2011. |
[25] | A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. |
[26] | E. Ugurlu, Dirac systems with regular and singular transmission effects, Turkish J. Math., 2017, 41(1), 193–210. |
[27] | P. Wang and W. Wang, Anti-periodic boundary value problem for first order impulsive delay difference equations, Adv. Difference Equ., 2015, 93, 13 pp. |