2019 Volume 9 Issue 4
Article Contents

Zhenzhen Li, Binxiang Dai. ANALYSIS OF DYNAMICS IN A GENERAL INTRAGUILD PREDATION MODEL WITH INTRASPECIFIC COMPETITION[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1493-1526. doi: 10.11948/2156-907X.20180296
Citation: Zhenzhen Li, Binxiang Dai. ANALYSIS OF DYNAMICS IN A GENERAL INTRAGUILD PREDATION MODEL WITH INTRASPECIFIC COMPETITION[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1493-1526. doi: 10.11948/2156-907X.20180296

ANALYSIS OF DYNAMICS IN A GENERAL INTRAGUILD PREDATION MODEL WITH INTRASPECIFIC COMPETITION

  • Corresponding author: Email address: bxdai@csu.edu.cn(B. Dai)
  • Fund Project: This work was supported by the National Nature Science Foundation of China(No. 11871475) and the Fundamental Research Funds for the Central Universities of Central South University(No. 2018zzts311)
  • This paper is devoted to studying the dynamical properties of a general intraguild predation model with intraspecific competition. We first investigate the stability of all possible equilibria in relation to the ecological parameters, and then study the long time behavior of the solution. Moreover, we provide a detailed analysis of dynamics of a IGP model with linear functional response and intraspecific competition. Our results show that the impact of the intraspecific competition essentially increases the dynamical complexity of the system.
    MSC: 34A34, 34C11, 34D05, 34D20
  • 加载中
  • [1] A. Atabaigi, Bifurcation and chaos in a discrete time predator-prey system of Leslie type with generalized Holling type Ⅲ functional response, J. Appl. Anal. Comput., 2017, 7(2), 411-426.

    Google Scholar

    [2] P. Amarasekare, Coexistence of intraguild predators and prey in resource-rich environments, Ecol., 2008, 89(10), 2786-2797. doi: 10.1890/07-1508.1

    CrossRef Google Scholar

    [3] P. Abrams, S. Fung, Prey persistence and abundance in systems with intraguild predation and type-2 functional response, J. Theor. Biol., 2010, 264, 1033-1042. doi: 10.1016/j.jtbi.2010.02.045

    CrossRef Google Scholar

    [4] D. Bolnick, Can intraspecific competition drive disruptive selection? an experimental test in natural populations of sticklebacks, Evol., 2004, 58(3), 608-618.

    Google Scholar

    [5] F. Brauer, C. Castillo Chavez, Mathematical Models in Population Biology and Epidemiology (Second Edition), Springer, New York, 2012.

    Google Scholar

    [6] G. Butler, H. Freedman, P. Waltman, Uniformly persistent systems, Proc. Amer. Math. Soc., 1986, 96(3), 425-430. doi: 10.1090/S0002-9939-1986-0822433-4

    CrossRef Google Scholar

    [7] S. Chow, C. Li, D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge, 1994.

    Google Scholar

    [8] C. Dye, Intraspecific competition amongst larval Aedes aegypti food exploitation or chemical interference, Ecol. Entomol., 1982, 7, 39-46. doi: 10.1111/j.1365-2311.1982.tb00642.x

    CrossRef Google Scholar

    [9] H. Freedman, P. Waltman, Persistence in models of three interacting predator-prey populations, Math. Biosci., 1984, 68(2), 213-231. doi: 10.1016/0025-5564(84)90032-4

    CrossRef Google Scholar

    [10] H. Freedman, S. Ruan, M. Tang, Uniform persistence and flows near a closed positively invariant set, J. Dynam. Diff. Eqs., 1994, 6(4), 583-600. doi: 10.1007/BF02218848

    CrossRef Google Scholar

    [11] M. Freeze, Y. Chang, W. Feng, Analysis of dynamics in a complex food chain with ratio-dependent functional response, JAAC, 2014, 4(1), 69-87.

    Google Scholar

    [12] C. Holling, The components of predation as revealed by a study of small mammal predation of the European Pine Sawfly, Can. Entomol., 1959, 91, 293-320. doi: 10.4039/Ent91293-5

    CrossRef Google Scholar

    [13] R. Holt, G. Polis, A theoretical framework for intraguild predation, Am. Nat., 1997, 149, 745-764. doi: 10.1086/286018

    CrossRef Google Scholar

    [14] R. Han, B. Dai, Spatiotemporal dynamics and Hopf bifurcation in a delayed diffusive intraguild predation model with Holling Ⅱ functional response, Int. J. Bifurcat.Chaos, 2016, 26(12), 1-31.

    Google Scholar

    [15] R. Han, B. Dai, Spatiotemporal dynamics and spatial pattern in a diffusive intraguild predation model with delay effect, Appl. Math. Comput., 2017, 312, 177-201.

    Google Scholar

    [16] R. Han, B. Dai, L. Wang, Delay induced spatiotemporal patterns in a diffusive intraguild predation model with Beddington-DeAngelis functional response, Math. Biosci. Eng., 2018, 15(3), 595-627.

    Google Scholar

    [17] S. Hsu, S. Ruan, T. Yang, Analysis of three species Lotka-Volterra food web models with omnivory, J. Math. Anal. Appl., 2015, 426(2), 659-687.

    Google Scholar

    [18] T. Hanse, N. Stenseth, H. Henttonen, J. Tast, Interspecific and intraspecific competition as causes of direct and delayed density dependence in a fluctuating vole population, Proc. Natl. Acad. Sci., 1999, 96, 986-991. doi: 10.1073/pnas.96.3.986

    CrossRef Google Scholar

    [19] A. Korobeinikov, Stability of ecosystem: global properties of a general predator-prey model, Math. Medic. Biol., 2009, 26, 309-321. doi: 10.1093/imammb/dqp009

    CrossRef Google Scholar

    [20] Y. Kuznetsov, Elements of Applied Bifurcation Theory (Third Edition), Springer, New York, 2004.

    Google Scholar

    [21] Y. Kang, L. Wedekin, Dynamics of a intraguild predation model with generalist or specialist predator, J. Math. Biol., 2013, 67(5), 1227-1259. doi: 10.1007/s00285-012-0584-z

    CrossRef Google Scholar

    [22] M. Van Kleunen, M. Fischer, B. Schmid, Effects of intraspecific competition on size variation and reproductive allocation in a clonal plant, OIKOS, 2001, 94, 515-524. doi: 10.1034/j.1600-0706.2001.940313.x

    CrossRef Google Scholar

    [23] Z. Li, B. Dai, Global dynamics of delayed intraguild predation model with intraspecific competition, Int. J. Biomath., 2018, 11(8), 1-39.

    Google Scholar

    [24] K. Mischaikow, H. Smith, H. Thieme, Asymptotically autonomous semiflows: chain recurrence and Lyapunov functions, Trans. Amer. Math. Soc., 1995, 347(5), 1669-1685. doi: 10.1090/tran/1995-347-05

    CrossRef Google Scholar

    [25] C. Pao, Nonlinear parabolic and elliptic equations, Plenum Press, New York and London, 1992.

    Google Scholar

    [26] G. Polis, R. Holt, Intraguild predation: the dynamics of complex trophic interactions, Trends Ecol. Evol., 1992, 7, 151-154. doi: 10.1016/0169-5347(92)90208-S

    CrossRef Google Scholar

    [27] M. Peng, Z. Zhang, X. Wang, X. Liu, Hopf bifurcation analysis for a delayed predator-prey system with a prey refuge and selective harvesting, J. Appl. Anal. Comput., 2018, 8(3), 982-997.

    Google Scholar

    [28] S. Ruan, Oscillations in plankton models with nutrient recycling, J. Theor. Biol., 2001, 208(1), 15-26.

    Google Scholar

    [29] H. Shu, X. Hu, L. Wang, J. Watmough, Delay induced stability switch, multitype bistability and chaos in an intraguild predation model, J. Math. Biol., 2015, 71, 1269-1298. doi: 10.1007/s00285-015-0857-4

    CrossRef Google Scholar

    [30] A. Verdy, P. Amarasekare, Alternative stable states in communities with intraguild predation, J. Theor. Biol., 2010, 262(1), 116-128. doi: 10.1016/j.jtbi.2009.09.011

    CrossRef Google Scholar

    [31] Y. Wang, D. DeAngelis, Stability of an intraguild predation system with mutual predation, Commun. Nonl. Sci. Numer. Simul., 2016, 33, 141-159. doi: 10.1016/j.cnsns.2015.09.004

    CrossRef Google Scholar

    [32] Y. Wang, W. Jiang, Bifurcations in a delayed differential-algebraic plankton economic system, J. Appl. Anal. Comput., 2017, 7(4), 1431-1447.

    Google Scholar

Figures(10)  /  Tables(1)

Article Metrics

Article views(3086) PDF downloads(770) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint