[1]
|
M. P. Aghababa, A. R. Haghighi and M. Roohi, Stabilisation of unknown fractional-order chaotic systems: an adaptive switching control strategy with application to power systems, Generation, Transmission & Distribution, IET, 2015, 9(14), 1883–1893.
Google Scholar
|
[2]
|
B. Ahmad, S. K. Ntouyas and A. Alsaedi, On a coupled system of fractional differential equations with coupled nonlocal and integral boundary condiitons, Chaos, Solitons & Fractals, 2016, 83, 234–241.
Google Scholar
|
[3]
|
M. S. Asl and M. Javidi, An improved PC scheme for nonlinear fractional differential equations: Error and stability analysis, Journal of Computational and Applied Mathematics, 2017, 324, 101–117. doi: 10.1016/j.cam.2017.04.026
CrossRef Google Scholar
|
[4]
|
M. S. Asl and M. Javidi, Novel algorithms to estimate nonlinear FDEs: Applied to fractional order nutrient-phytoplankton–zooplankton system, Journal of Computational and Applied Mathematics, 2018, 339, 193–207. doi: 10.1016/j.cam.2017.10.030
CrossRef Google Scholar
|
[5]
|
M. S. Asl, M. Javidi and Y. Yan, A novel high-order algorithm for the numerical estimation of fractional differential equations, Journal of Computational and Applied Mathematics, 2018, 342, 180–201. doi: 10.1016/j.cam.2017.12.047
CrossRef Google Scholar
|
[6]
|
B. Bandyopadhyay and S. Kamal, Essence of fractional order calculus, physical interpretation and applications, in Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach, Springer, 2015, 1–54.
Google Scholar
|
[7]
|
S. B. Bhalekar, Forming mechanizm of Bhalekar-Gejji chaotic dynamical system, American Journal of Computational and Applied Mathematics, 2012, 2(6), 257–259.
Google Scholar
|
[8]
|
J. Cao and C. Xu, A high order schema for the numerical solution of the fractional ordinary differential equations, Journal of Computational Physics, 2013, 238, 154–168. doi: 10.1016/j.jcp.2012.12.013
CrossRef Google Scholar
|
[9]
|
C. Cattani, Sinc-fractional operator on shannon wavelet space, Frontiers in Physics, 2018, 6, 118. doi: 10.3389/fphy.2018.00118
CrossRef Google Scholar
|
[10]
|
J. Chen, F. Liu, K. Burrage and S. Shen, Numerical techniques for simulating a fractional mathematical model of epidermal wound healing, Journal of Applied Mathematics and Computing, 2013, 41(1–2), 33–47. doi: 10.1007/s12190-012-0591-7
CrossRef Google Scholar
|
[11]
|
W.-C. Chen, Nonlinear dynamics and chaos in a fractional-order financial system, Chaos, Solitons & Fractals, 2008, 36(5), 1305–1314.
Google Scholar
|
[12]
|
V. Daftardar-Gejji, Y. Sukale and S. Bhalekar, A new predictor-corrector method for fractional differential equations, Applied Mathematics and Computation, 2014, 244, 158–182. doi: 10.1016/j.amc.2014.06.097
CrossRef Google Scholar
|
[13]
|
M.-F. Danca, Numerical approximation of a class of discontinuous systems of fractional order, Nonlinear Dynamics, 2011, 66(1–2), 133–139. doi: 10.1007/s11071-010-9915-z
CrossRef Google Scholar
|
[14]
|
E. C. De Oliveira and J. A. T. Machado, A review of definitions for fractional derivatives and integral, Mathematical Problems in Engineering, 2014. Doi: 10.1155/2014/238459.
CrossRef Google Scholar
|
[15]
|
K. Deng and W. Deng, Finite difference/predictor-corrector approximations for the space and time fractional fokker–planck equation, Applied Mathematics Letters, 2012, 25(11), 1815–1821. doi: 10.1016/j.aml.2012.02.025
CrossRef Google Scholar
|
[16]
|
W. Deng, Numerical algorithm for the time fractional Fokker-Planck equation, Journal of Computational Physics, 2007, 227(2), 1510–1522. doi: 10.1016/j.jcp.2007.09.015
CrossRef Google Scholar
|
[17]
|
W. Deng, Short memory principle and a predictor-corrector approach for fractional differential equations, Journal of Computational and Applied Mathematics, 2007, 206(1), 174–188. doi: 10.1016/j.cam.2006.06.008
CrossRef Google Scholar
|
[18]
|
W. Deng and C. Li, Numerical schemes for fractional ordinary differential equations, in Numerical Modelling (Edited by P. Miidla), Chap. 16, InTech, Rijeka, 2012, 355–374.
Google Scholar
|
[19]
|
K. Diethelm, Efficient solution of multi-term fractional differential equations using p(ec)me methods, Computing, 2003, 71(4), 305–319. doi: 10.1007/s00607-003-0033-3
CrossRef Google Scholar
|
[20]
|
K. Diethelm, N. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynamics, 2002, 29(1–4), 3–22.
Google Scholar
|
[21]
|
K. Diethelm, N. J. Ford and A. D. Freed, Detailed error analysis for a fractional adams method, Numerical algorithms, 2004, 36(1), 31–52. doi: 10.1023/B:NUMA.0000027736.85078.be
CrossRef Google Scholar
|
[22]
|
K. Diethelm and A. D. Freed, The fracPECE subroutine for the numerical solution of differential equations of fractional order, Forschung und wissenschaftliches Rechnen, 1998, 1999, 57–71.
Google Scholar
|
[23]
|
G.-h. Gao, Z.-z. Sun and H.-w. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, Journal of Computational Physics, 2014, 259, 33–50. doi: 10.1016/j.jcp.2013.11.017
CrossRef Google Scholar
|
[24]
|
S. Gupta, D. Kumar and J. Singh, Numerical study for systems of fractional differential equations via Laplace transform, Journal of the Egyptian Mathematical Society, 2015, 23(2), 256–262. doi: 10.1016/j.joems.2014.04.003
CrossRef Google Scholar
|
[25]
|
R. E. Gutiérrez, J. M. Rosário and J. Tenreiro Machado, Fractional order calculus: basic concepts and engineering applications, Mathematical Problems in Engineering, 2010, 2010. Doi: 10.1155/2010/375858.
CrossRef Google Scholar
|
[26]
|
V. G. Ivancevic and T. T. Ivancevic, High-dimensional chaotic and attractor systems: a comprehensive introduction, 32, Springer Science & Business Media, 2007.
Google Scholar
|
[27]
|
T. Kozlinskaya and V. Kovenya, The predictor–corrector method for solving of magnetohydrodynamic problems, in Hyperbolic Problems: Theory, Numerics, Applications, Springer, 2008, 625–633.
Google Scholar
|
[28]
|
C. Li, A. Chen and J. Ye, Numerical approaches to fractional calculus and fractional ordinary differential equation, Journal of Computational Physics, 2011, 230(9), 3352–3368. doi: 10.1016/j.jcp.2011.01.030
CrossRef Google Scholar
|
[29]
|
X. Li, Numerical solution of fractional differential equations using cubic Bspline wavelet collocation method, Communications in Nonlinear Science and Numerical Simulation, 2012, 17(10), 3934–3946. doi: 10.1016/j.cnsns.2012.02.009
CrossRef Google Scholar
|
[30]
|
M. F. Oskouie, R. Ansari and F. Sadeghi, Nonlinear vibration analysis of fractional viscoelastic Euler-Bernoulli nanobeams based on the surface stress theory, Acta Mechanica Solida Sinica, 2017, 30(4), 416–424. doi: 10.1016/j.camss.2017.07.003
CrossRef Google Scholar
|
[31]
|
M. Pan, L. Zheng, F. Liu and X. Zhang, Lie group analysis and similarity solution for fractional Blasius flow, Communications in Nonlinear Science and Numerical Simulation, 2016, 37, 90–101. doi: 10.1016/j.cnsns.2016.01.010
CrossRef Google Scholar
|
[32]
|
I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation. fractional calculus and applied analysis, Fractional Calculus and Applied Analysis, 2002, 5(4), 367–386.
Google Scholar
|
[33]
|
M. Roohi, M. P. Aghababa and A. R. Haghighi, Switching adaptive controllers to control fractional-order complex systems with unknown structure and input nonlinearities, Complexity, 2015, 21(2), 211–223. doi: 10.1002/cplx.v21.2
CrossRef Google Scholar
|
[34]
|
L. Song, S. Xu and J. Yang, Dynamical models of happiness with fractional order, Communications in Nonlinear Science and Numerical Simulation, 2010, 15(3), 616–628. doi: 10.1016/j.cnsns.2009.04.029
CrossRef Google Scholar
|
[35]
|
L. Vázquez and H. Jafari, Fractional calculus: theory and numerical methods, Open Physics, 2013, 11(10), 1163–1163.
Google Scholar
|
[36]
|
X. Xiao-Jun, H. M. Srivastava and J. Machado, A new fractional derivative without singular kernel, Thermal Science, 2016, 20(2), 753–756. doi: 10.2298/TSCI151224222Y
CrossRef Google Scholar
|
[37]
|
M. Xu and W. Tan, Intermediate process, critical phenomena-theory, methodology and evolution of the fractional operator and its applications to the modern mechanics, Sci. China G Phys. Mech. Astron, 2006, 36, 225–38.
Google Scholar
|
[38]
|
Y. Yan and C. Kou, Stability analysis for a fractional differential model of hiv infection of CD4+ T-cells with time delay, Mathematics and Computers in Simulation, 2012, 82(9), 1572–1585. doi: 10.1016/j.matcom.2012.01.004
CrossRef Google Scholar
|
[39]
|
A.-M. Yang, Y. Han, J. Li and W.-X. Liu, On steady heat flow problem involving Yang-Srivastava-Machado fractional derivative without singular kernel, Thermal Science, 2016, 20(suppl 3), S719–S723.
Google Scholar
|
[40]
|
C. Yang and F. Liu, A computationally effective predictor-corrector method for simulating fractional order dynamical control system, ANZIAM Journal, 2006, 47, 168–184. doi: 10.21914/anziamj.v47i0.1037
CrossRef Google Scholar
|
[41]
|
X.-J. Yang, F. Gao, Y. Ju and H.-W. Zhou, Fundamental solutions of the general fractional-order diffusion equations, Mathematical Methods in the Applied Sciences, 2018, 41(18), 9312–9320. doi: 10.1002/mma.5341
CrossRef Google Scholar
|
[42]
|
X.-J. Yang, F. Gao, J. T. Machado and D. Baleanu, A new fractional derivative involving the normalized sinc function without singular kernel, The European Physical Journal Special Topics, 2017, 226(16-18), 3567–3575. doi: 10.1140/epjst/e2018-00020-2
CrossRef Google Scholar
|
[43]
|
X.-J. Yang, F. Gao and H. Srivastava, A new computational approach for solving nonlinear local fractional pdes, Journal of Computational and Applied Mathematics, 2018, 339, 285–296. doi: 10.1016/j.cam.2017.10.007
CrossRef Google Scholar
|
[44]
|
X.-J. Yang and J. T. Machado, A new fractional operator of variable order: application in the description of anomalous diffusion, Physica A: Statistical Mechanics and its Applications, 2017, 481, 276–283. doi: 10.1016/j.physa.2017.04.054
CrossRef Google Scholar
|
[45]
|
Z. Yang, Z. Yuan, Y. Nie et al., Finite element method for nonlinear Riesz space fractional diffusion equations on irregular domains, Journal of Computational Physics, 2017, 330, 863–883. doi: 10.1016/j.jcp.2016.10.053
CrossRef Google Scholar
|