2019 Volume 9 Issue 4
Article Contents

Mohammad Shahbazi Asl, Mohammad Javidi, Bashir Ahmad. NEW PREDICTOR-CORRECTOR APPROACH FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS: ERROR ANALYSIS AND STABILITY[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1527-1557. doi: 10.11948/2156-907X.20180309
Citation: Mohammad Shahbazi Asl, Mohammad Javidi, Bashir Ahmad. NEW PREDICTOR-CORRECTOR APPROACH FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS: ERROR ANALYSIS AND STABILITY[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1527-1557. doi: 10.11948/2156-907X.20180309

NEW PREDICTOR-CORRECTOR APPROACH FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS: ERROR ANALYSIS AND STABILITY

  • Corresponding author: Email address: bashirahmad qau@yahoo.com (B.Ahmad)
  • Fund Project: This project is supported by a research grant of the University of Tabriz
  • In this paper, the predictor-corrector approach is used to propose two algorithms for the numerical solution of linear and non-linear fractional differential equations (FDE). The fractional order derivative is taken to be in the sense of Caputo and its properties are used to transform FDE into a Volterra-type integral equation. Simpson's 3/8 rule is used to develop new numerical schemes to obtain the approximate solution of the integral equation associated with the given FDE. The error and stability analysis for the two methods are presented. The proposed methods are compared with the ones available in the literature. Numerical simulation is performed to demonstrate the validity and applicability of both the proposed techniques. As an application, the problem of dynamics of the new fractional order non-linear chaotic system introduced by Bhalekar and Daftardar-Gejji is investigated by means of the obtained numerical algorithms.
    MSC: 26A33, 45D05, 65L07, 65L20
  • 加载中
  • [1] M. P. Aghababa, A. R. Haghighi and M. Roohi, Stabilisation of unknown fractional-order chaotic systems: an adaptive switching control strategy with application to power systems, Generation, Transmission & Distribution, IET, 2015, 9(14), 1883–1893.

    Google Scholar

    [2] B. Ahmad, S. K. Ntouyas and A. Alsaedi, On a coupled system of fractional differential equations with coupled nonlocal and integral boundary condiitons, Chaos, Solitons & Fractals, 2016, 83, 234–241.

    Google Scholar

    [3] M. S. Asl and M. Javidi, An improved PC scheme for nonlinear fractional differential equations: Error and stability analysis, Journal of Computational and Applied Mathematics, 2017, 324, 101–117. doi: 10.1016/j.cam.2017.04.026

    CrossRef Google Scholar

    [4] M. S. Asl and M. Javidi, Novel algorithms to estimate nonlinear FDEs: Applied to fractional order nutrient-phytoplankton–zooplankton system, Journal of Computational and Applied Mathematics, 2018, 339, 193–207. doi: 10.1016/j.cam.2017.10.030

    CrossRef Google Scholar

    [5] M. S. Asl, M. Javidi and Y. Yan, A novel high-order algorithm for the numerical estimation of fractional differential equations, Journal of Computational and Applied Mathematics, 2018, 342, 180–201. doi: 10.1016/j.cam.2017.12.047

    CrossRef Google Scholar

    [6] B. Bandyopadhyay and S. Kamal, Essence of fractional order calculus, physical interpretation and applications, in Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach, Springer, 2015, 1–54.

    Google Scholar

    [7] S. B. Bhalekar, Forming mechanizm of Bhalekar-Gejji chaotic dynamical system, American Journal of Computational and Applied Mathematics, 2012, 2(6), 257–259.

    Google Scholar

    [8] J. Cao and C. Xu, A high order schema for the numerical solution of the fractional ordinary differential equations, Journal of Computational Physics, 2013, 238, 154–168. doi: 10.1016/j.jcp.2012.12.013

    CrossRef Google Scholar

    [9] C. Cattani, Sinc-fractional operator on shannon wavelet space, Frontiers in Physics, 2018, 6, 118. doi: 10.3389/fphy.2018.00118

    CrossRef Google Scholar

    [10] J. Chen, F. Liu, K. Burrage and S. Shen, Numerical techniques for simulating a fractional mathematical model of epidermal wound healing, Journal of Applied Mathematics and Computing, 2013, 41(1–2), 33–47. doi: 10.1007/s12190-012-0591-7

    CrossRef Google Scholar

    [11] W.-C. Chen, Nonlinear dynamics and chaos in a fractional-order financial system, Chaos, Solitons & Fractals, 2008, 36(5), 1305–1314.

    Google Scholar

    [12] V. Daftardar-Gejji, Y. Sukale and S. Bhalekar, A new predictor-corrector method for fractional differential equations, Applied Mathematics and Computation, 2014, 244, 158–182. doi: 10.1016/j.amc.2014.06.097

    CrossRef Google Scholar

    [13] M.-F. Danca, Numerical approximation of a class of discontinuous systems of fractional order, Nonlinear Dynamics, 2011, 66(1–2), 133–139. doi: 10.1007/s11071-010-9915-z

    CrossRef Google Scholar

    [14] E. C. De Oliveira and J. A. T. Machado, A review of definitions for fractional derivatives and integral, Mathematical Problems in Engineering, 2014. Doi: 10.1155/2014/238459.

    CrossRef Google Scholar

    [15] K. Deng and W. Deng, Finite difference/predictor-corrector approximations for the space and time fractional fokker–planck equation, Applied Mathematics Letters, 2012, 25(11), 1815–1821. doi: 10.1016/j.aml.2012.02.025

    CrossRef Google Scholar

    [16] W. Deng, Numerical algorithm for the time fractional Fokker-Planck equation, Journal of Computational Physics, 2007, 227(2), 1510–1522. doi: 10.1016/j.jcp.2007.09.015

    CrossRef Google Scholar

    [17] W. Deng, Short memory principle and a predictor-corrector approach for fractional differential equations, Journal of Computational and Applied Mathematics, 2007, 206(1), 174–188. doi: 10.1016/j.cam.2006.06.008

    CrossRef Google Scholar

    [18] W. Deng and C. Li, Numerical schemes for fractional ordinary differential equations, in Numerical Modelling (Edited by P. Miidla), Chap. 16, InTech, Rijeka, 2012, 355–374.

    Google Scholar

    [19] K. Diethelm, Efficient solution of multi-term fractional differential equations using p(ec)me methods, Computing, 2003, 71(4), 305–319. doi: 10.1007/s00607-003-0033-3

    CrossRef Google Scholar

    [20] K. Diethelm, N. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynamics, 2002, 29(1–4), 3–22.

    Google Scholar

    [21] K. Diethelm, N. J. Ford and A. D. Freed, Detailed error analysis for a fractional adams method, Numerical algorithms, 2004, 36(1), 31–52. doi: 10.1023/B:NUMA.0000027736.85078.be

    CrossRef Google Scholar

    [22] K. Diethelm and A. D. Freed, The fracPECE subroutine for the numerical solution of differential equations of fractional order, Forschung und wissenschaftliches Rechnen, 1998, 1999, 57–71.

    Google Scholar

    [23] G.-h. Gao, Z.-z. Sun and H.-w. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, Journal of Computational Physics, 2014, 259, 33–50. doi: 10.1016/j.jcp.2013.11.017

    CrossRef Google Scholar

    [24] S. Gupta, D. Kumar and J. Singh, Numerical study for systems of fractional differential equations via Laplace transform, Journal of the Egyptian Mathematical Society, 2015, 23(2), 256–262. doi: 10.1016/j.joems.2014.04.003

    CrossRef Google Scholar

    [25] R. E. Gutiérrez, J. M. Rosário and J. Tenreiro Machado, Fractional order calculus: basic concepts and engineering applications, Mathematical Problems in Engineering, 2010, 2010. Doi: 10.1155/2010/375858.

    CrossRef Google Scholar

    [26] V. G. Ivancevic and T. T. Ivancevic, High-dimensional chaotic and attractor systems: a comprehensive introduction, 32, Springer Science & Business Media, 2007.

    Google Scholar

    [27] T. Kozlinskaya and V. Kovenya, The predictor–corrector method for solving of magnetohydrodynamic problems, in Hyperbolic Problems: Theory, Numerics, Applications, Springer, 2008, 625–633.

    Google Scholar

    [28] C. Li, A. Chen and J. Ye, Numerical approaches to fractional calculus and fractional ordinary differential equation, Journal of Computational Physics, 2011, 230(9), 3352–3368. doi: 10.1016/j.jcp.2011.01.030

    CrossRef Google Scholar

    [29] X. Li, Numerical solution of fractional differential equations using cubic Bspline wavelet collocation method, Communications in Nonlinear Science and Numerical Simulation, 2012, 17(10), 3934–3946. doi: 10.1016/j.cnsns.2012.02.009

    CrossRef Google Scholar

    [30] M. F. Oskouie, R. Ansari and F. Sadeghi, Nonlinear vibration analysis of fractional viscoelastic Euler-Bernoulli nanobeams based on the surface stress theory, Acta Mechanica Solida Sinica, 2017, 30(4), 416–424. doi: 10.1016/j.camss.2017.07.003

    CrossRef Google Scholar

    [31] M. Pan, L. Zheng, F. Liu and X. Zhang, Lie group analysis and similarity solution for fractional Blasius flow, Communications in Nonlinear Science and Numerical Simulation, 2016, 37, 90–101. doi: 10.1016/j.cnsns.2016.01.010

    CrossRef Google Scholar

    [32] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation. fractional calculus and applied analysis, Fractional Calculus and Applied Analysis, 2002, 5(4), 367–386.

    Google Scholar

    [33] M. Roohi, M. P. Aghababa and A. R. Haghighi, Switching adaptive controllers to control fractional-order complex systems with unknown structure and input nonlinearities, Complexity, 2015, 21(2), 211–223. doi: 10.1002/cplx.v21.2

    CrossRef Google Scholar

    [34] L. Song, S. Xu and J. Yang, Dynamical models of happiness with fractional order, Communications in Nonlinear Science and Numerical Simulation, 2010, 15(3), 616–628. doi: 10.1016/j.cnsns.2009.04.029

    CrossRef Google Scholar

    [35] L. Vázquez and H. Jafari, Fractional calculus: theory and numerical methods, Open Physics, 2013, 11(10), 1163–1163.

    Google Scholar

    [36] X. Xiao-Jun, H. M. Srivastava and J. Machado, A new fractional derivative without singular kernel, Thermal Science, 2016, 20(2), 753–756. doi: 10.2298/TSCI151224222Y

    CrossRef Google Scholar

    [37] M. Xu and W. Tan, Intermediate process, critical phenomena-theory, methodology and evolution of the fractional operator and its applications to the modern mechanics, Sci. China G Phys. Mech. Astron, 2006, 36, 225–38.

    Google Scholar

    [38] Y. Yan and C. Kou, Stability analysis for a fractional differential model of hiv infection of CD4+ T-cells with time delay, Mathematics and Computers in Simulation, 2012, 82(9), 1572–1585. doi: 10.1016/j.matcom.2012.01.004

    CrossRef Google Scholar

    [39] A.-M. Yang, Y. Han, J. Li and W.-X. Liu, On steady heat flow problem involving Yang-Srivastava-Machado fractional derivative without singular kernel, Thermal Science, 2016, 20(suppl 3), S719–S723.

    Google Scholar

    [40] C. Yang and F. Liu, A computationally effective predictor-corrector method for simulating fractional order dynamical control system, ANZIAM Journal, 2006, 47, 168–184. doi: 10.21914/anziamj.v47i0.1037

    CrossRef Google Scholar

    [41] X.-J. Yang, F. Gao, Y. Ju and H.-W. Zhou, Fundamental solutions of the general fractional-order diffusion equations, Mathematical Methods in the Applied Sciences, 2018, 41(18), 9312–9320. doi: 10.1002/mma.5341

    CrossRef Google Scholar

    [42] X.-J. Yang, F. Gao, J. T. Machado and D. Baleanu, A new fractional derivative involving the normalized sinc function without singular kernel, The European Physical Journal Special Topics, 2017, 226(16-18), 3567–3575. doi: 10.1140/epjst/e2018-00020-2

    CrossRef Google Scholar

    [43] X.-J. Yang, F. Gao and H. Srivastava, A new computational approach for solving nonlinear local fractional pdes, Journal of Computational and Applied Mathematics, 2018, 339, 285–296. doi: 10.1016/j.cam.2017.10.007

    CrossRef Google Scholar

    [44] X.-J. Yang and J. T. Machado, A new fractional operator of variable order: application in the description of anomalous diffusion, Physica A: Statistical Mechanics and its Applications, 2017, 481, 276–283. doi: 10.1016/j.physa.2017.04.054

    CrossRef Google Scholar

    [45] Z. Yang, Z. Yuan, Y. Nie et al., Finite element method for nonlinear Riesz space fractional diffusion equations on irregular domains, Journal of Computational Physics, 2017, 330, 863–883. doi: 10.1016/j.jcp.2016.10.053

    CrossRef Google Scholar

Figures(3)  /  Tables(2)

Article Metrics

Article views(3676) PDF downloads(927) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint