[1]
|
G. Autuori, A. Fiscella and P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 2015, 125, 699–714. doi: 10.1016/j.na.2015.06.014
CrossRef Google Scholar
|
[2]
|
H. Brezis and E. Lieb, A relation betweenn pointwise convergence of functions and convergence of functionals, Proc. AMS., 1983, 88, 486–490. doi: 10.1090/S0002-9939-1983-0699419-3
CrossRef Google Scholar
|
[3]
|
M. Caponi and P. Pucci, Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations, Ann. Mat. Pura Appl., 2016, 195, 2099–2129. doi: 10.1007/s10231-016-0555-x
CrossRef Google Scholar
|
[4]
|
P. d'Avenia, Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations, Advanced Nonlinear Studies, 2002, 2, 177–192.
Google Scholar
|
[5]
|
Y. B. Deng, S.J. Peng and W. Shuai, Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in $\mathbb{R}^3$, J. Funct. Anal., 2015, 269, 3500–3527. doi: 10.1016/j.jfa.2015.09.012
CrossRef $\mathbb{R}^3$" target="_blank">Google Scholar
|
[6]
|
L. D'Onofrio, A. Fiscella and G. Molica Bisci, Perturbation methods for nonlocal Kirchhoff type problems, Fractional Calculus and Applied Analysis, 2017, 20, 829–853.
Google Scholar
|
[7]
|
M. J. Esteban and P. L. Lions, A compactness Lemma, Nonlinear Anal., 1983, 7, 381–385. doi: 10.1016/0362-546X(83)90091-3
CrossRef Google Scholar
|
[8]
|
G. M. Figueiredo, N. Ikoma and J. R. S. Júnior, Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Rational Mech. Anal., 2014, 213, 931–979. doi: 10.1007/s00205-014-0747-8
CrossRef Google Scholar
|
[9]
|
Z. Guo, Ground states for Kirchhoff equations without compact condition, J. Differential Equations, 2015, 259, 2884–2902. doi: 10.1016/j.jde.2015.04.005
CrossRef Google Scholar
|
[10]
|
X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb{R}^3$, J. Differential Equations, 2012, 252, 1813–1834. doi: 10.1016/j.jde.2011.08.035
CrossRef $\mathbb{R}^3$" target="_blank">Google Scholar
|
[11]
|
J. H. Jin and X. Wu, Infinitely many radial solutions for Kirchhoff type problems in $\mathbb{R}^N$, J. Math. Anal. Appl., 2010, 369, 564–574. doi: 10.1016/j.jmaa.2010.03.059
CrossRef $\mathbb{R}^N$" target="_blank">Google Scholar
|
[12]
|
G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^3$, J. Differential Equations, 2014, 257, 566–600. doi: 10.1016/j.jde.2014.04.011
CrossRef $\mathbb{R}^3$" target="_blank">Google Scholar
|
[13]
|
Y. H. Li, F. Y. Li and J. P. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differential Equations, 2012, 253, 2285–2294. doi: 10.1016/j.jde.2012.05.017
CrossRef Google Scholar
|
[14]
|
Z. P. Liang, F. Y. Li and J. P. Shi, Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. Inst. H. Poincare? Anal. Non Line?aire, 2014, 31, 155–167. doi: 10.1016/j.anihpc.2013.01.006
CrossRef Google Scholar
|
[15]
|
W. Liu and X. He, Multiplicity of high energy solutions for superlinear Kirchhoff equations, J. Appl. Math. Comput., 2012, 39, 473–487. doi: 10.1007/s12190-012-0536-1
CrossRef Google Scholar
|
[16]
|
Z. Liu and S. Guo, Existence of positive ground state solutions for Kirchhoff type problems, Nonlinear Anal., 2015, 120, 1–13. doi: 10.1016/j.na.2014.12.008
CrossRef Google Scholar
|
[17]
|
A. Ourraoui, On a p- Kirchhoff problem involving a critical nonlinearity, C. R. Math. Acad. Sci. Paris Ser. I., 2014, 352, 295–298. doi: 10.1016/j.crma.2014.01.015
CrossRef Google Scholar
|
[18]
|
P. Piersanti and P. Pucci, Entire solutions for critical p-fractional Hardy Schrödinger Kirchhoff equations, Publ. Mat., 2018, 62, 3–36. doi: 10.5565/PUBLMAT6211801
CrossRef Google Scholar
|
[19]
|
S. I. Pohozaev, A certain class of quasilinear hyperbolic equations, Mat. Sb. (N.S.), 1975, 96(138), 152–166.
Google Scholar
|
[20]
|
D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 2006, 237, 655–674. doi: 10.1016/j.jfa.2006.04.005
CrossRef Google Scholar
|
[21]
|
D. Sun and Z. Zhang, Uniqueness, existence and concentration of positive ground state solutions for Kirchhoff type problems in $\mathbb{R}^3$, J. Math. Anal. Appl., 2018, 461, 128–149. doi: 10.1016/j.jmaa.2018.01.003
CrossRef $\mathbb{R}^3$" target="_blank">Google Scholar
|
[22]
|
X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $\mathbb{R}^3$, Nonlinear Anal. Real World Appl., 2011, 12, 1278–1287. doi: 10.1016/j.nonrwa.2010.09.023
CrossRef $\mathbb{R}^3$" target="_blank">Google Scholar
|
[23]
|
Q. Xie, S. Ma and X. Zhang, Bound state solutions of Kirchhoff type problems with critical exponent, J. Differential Equations, 2016, 261, 890–924. doi: 10.1016/j.jde.2016.03.028
CrossRef Google Scholar
|