[1]
|
L. Arnold, Random Dynamical System, Springer-Verlag, 1998.
Google Scholar
|
[2]
|
P. W. Bates, K. Lu, B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J.Differential Equations, 2009, 246, 845–869. doi: 10.1016/j.jde.2008.05.017
CrossRef Google Scholar
|
[3]
|
T. Caraballo, G. Lukasiewicz, J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Analysis, 2006, 64, 484–498. doi: 10.1016/j.na.2005.03.111
CrossRef Google Scholar
|
[4]
|
X. Ding, J. Jiang, Random Attractors for Stochastic Retarded Reaction-Diffusion equations on unbounded domains, Abstract and Applied Analysis, 2013, Article ID 981576.
Google Scholar
|
[5]
|
K. Deimling, Nonlinear Functional Analysis, Springer Press, Berlin, 1985.
Google Scholar
|
[6]
|
J. Duan, An introduction to Stochastic Dynamics, Science Press, Beijing, 2014.
Google Scholar
|
[7]
|
P. E. Kloeden, J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. A, 2007, 463, 163–181. doi: 10.1098/rspa.2006.1753
CrossRef Google Scholar
|
[8]
|
O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991.
Google Scholar
|
[9]
|
Y. Li, C. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the non-autonomous reaction-diffusion equations, Applied Mathematics and Computation, 2007, 190, 1020–1029. doi: 10.1016/j.amc.2006.11.187
CrossRef Google Scholar
|
[10]
|
Y. Li, A. Gu, J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J.Differential Equations, 2015, 258, 504–534. doi: 10.1016/j.jde.2014.09.021
CrossRef Google Scholar
|
[11]
|
Y. Li, B. Guo, Random attractors for quasi-continuous random dynamical systems and application to stochastic reaction-diffusion equation, J.Differential Equations, 2008, 245, 1775–1800. doi: 10.1016/j.jde.2008.06.031
CrossRef Google Scholar
|
[12]
|
Q. Ma, S. Wang and C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J., 2002, 51, 1541–1559. doi: 10.1512/iumj.2002.51.2255
CrossRef Google Scholar
|
[13]
|
J. C. Robinson, Infinite-Dimensional Dynamical System, Cambridge Univ.Press, UK, 2001.
Google Scholar
|
[14]
|
H. Song, Pullback attractors of non-autonomous reaction-diffusion equation in H01, J.Differential Equations, 2010, 249, 2357–2376. doi: 10.1016/j.jde.2010.07.034
CrossRef Google Scholar
|
[15]
|
A. Shirilkyan, S. Zelik, Exponential attractors for random dynamical systems and applications, Stoch PDE: Anal. Comp., 2013, 1, 241–281. doi: 10.1007/s40072-013-0007-1
CrossRef Google Scholar
|
[16]
|
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Springer-Verlag, 1997.
Google Scholar
|
[17]
|
J. Wang, Y. Wang, D. Zhao, Pullback attractors for multi-valued non-compact random dynamical systems generated by semi-linear degenerate parabolic equations with unbounded delays, Stochastics and Dynamics, 2016, 16, 1–49.
Google Scholar
|
[18]
|
B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical system, J. Differential Equations, 2009, 253, 544–1583.
Google Scholar
|
[19]
|
X. Wang, K. Lu, B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 2018, 264, 378–424. doi: 10.1016/j.jde.2017.09.006
CrossRef Google Scholar
|
[20]
|
Y. Wang, J. Wang, Pullback attractors for multi-valued non-compact random dynamical systems generated by reaction-diffusion equations on an unbounded domain, J. Differential Equations, 2015, 259, 728–776. doi: 10.1016/j.jde.2015.02.026
CrossRef Google Scholar
|
[21]
|
Z. Wang, S. Zhou, Random attractor for stochastic reaction-diffusion equation with multiplicative noise on unbounded domains, Journal of Mathematical Analysis and Applications, 2011, 384, 160–172. doi: 10.1016/j.jmaa.2011.02.082
CrossRef Google Scholar
|
[22]
|
C. Zhong, M. Yang, C. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 2006, 223, 367–399. doi: 10.1016/j.jde.2005.06.008
CrossRef Google Scholar
|
[23]
|
S. Zhou, Random exponential attractor for cocycle and application to non-autonomous stochastic lattice systems with multiplicative white noise, J. Differential Equations, 2017, 263, 2247–2279. doi: 10.1016/j.jde.2017.03.044
CrossRef Google Scholar
|
[24]
|
W. Zhao, Y. Li, (L2, Lp)-random attractors for stochastic reaction-diffusion on unbounded domains, Nonlinear Analysis, 2012, 75, 485–502. doi: 10.1016/j.na.2011.08.050
CrossRef Google Scholar
|
[25]
|
W. Zhao, A. Gu, Regularity of pullback attractors and random equllibrium for non-autonomous stochastic Fitzhugh-Nagumo system on unbounded domains, Journal of Applied Analysis and Computation, 2017, 7, 1285–1311.
Google Scholar
|
[26]
|
W. Zhao, S. Zhou, Random attractor for non-autonomous stochastic damped wave equation on unbounded domains, Journal of Applied Analysis and Computation, 2015, 5, 363–387.
Google Scholar
|