2022 Volume 12 Issue 5
Article Contents

Jingyu Xu, Zongguo Zhang, Huanhe Dong, Hongwei Yang. BÄCKLUND TRANSFORMATIONS AND ROUGE WAVES IN THE FRAME OF A FRACTIONAL ORDER MODEL IN MAGNETIZED DUSTY PLASMA[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 1842-1860. doi: 10.11948/20210379
Citation: Jingyu Xu, Zongguo Zhang, Huanhe Dong, Hongwei Yang. BÄCKLUND TRANSFORMATIONS AND ROUGE WAVES IN THE FRAME OF A FRACTIONAL ORDER MODEL IN MAGNETIZED DUSTY PLASMA[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 1842-1860. doi: 10.11948/20210379

BÄCKLUND TRANSFORMATIONS AND ROUGE WAVES IN THE FRAME OF A FRACTIONAL ORDER MODEL IN MAGNETIZED DUSTY PLASMA

  • Dusty plasma has become a hot topic in physics in recent years because of its wide application in the space environment, industrial processing and fusion reaction. The (3+1)-dimensional modified Zakharov-Kuznetsov (mZK) equation describing waves propagation in dusty plasma is derived via the reduced perturbation method, based on the governing equation. Furthermore, integer-order equation is derived as the fractional modified Zakharov-Kuznetsov (TF-mZK) equation. The exact solution and B$ \ddot{a} $cklund transformation are obtained by the fractional transformation and Bell polynomials. Finally, the rouge wave phenomenon in magnetized dusty plasma is described, and the effects of fractional order, phase velocity and dust-cyclotron frequency on the propagation characteristics of dust acoustic rogue waves are analyzed.

    MSC: 34A08, 76D25, 35Q56, 35L65
  • 加载中
  • [1] H. A. Al-Yousef, B. M. Alotaibi, R. E. Tolba and W. M. Moslem, Arbitrary amplitude dust-acoustic waves in Jupiter atmosphere, Resu. Phys., 2021, 21, 103792. doi: 10.1016/j.rinp.2020.103792

    CrossRef Google Scholar

    [2] A. A. Alderremy, J. F. Gomez-Aguilar, A. Shaban and M. S. Khaled, A fuzzy fractional model of coronavirus (COVID-19) and its study with Legendre spectral method, Res. Phys., 2021, 21, 103773.

    Google Scholar

    [3] P. S. Abhaya, D. Dipankar and A. Himanshu, On selection of improved fractional model and control of different systems with experimental validation, Comm. Nonl. Sci. Nume. Simu., 2019, 79, 104902. doi: 10.1016/j.cnsns.2019.104902

    CrossRef Google Scholar

    [4] S. A. Almutalk, S. A. El-Tantawy, E. I. El-Awady and S. K. El-Labany, On the numerical solution of nonplanar dust-acoustic super rogue waves in a strongly coupled dusty plasma, Phys. Lett. A, 2019, 383, 1937-1941. doi: 10.1016/j.physleta.2019.03.011

    CrossRef Google Scholar

    [5] A. Barkan, R. L. Merlino and N. D'angelo, Laboratory observation of the dust-acoustic wave mode, Phys. Plas., 1995, 2, 3563. doi: 10.1063/1.871121

    CrossRef Google Scholar

    [6] Y. Bi, Z. Zhang, Q. Liu and T. Liu, Research on nonlinear waves of blood flow in arterial vessels, Commun. Nonlinear Sci. Numer. Simulat., 2021, 102, 105918. doi: 10.1016/j.cnsns.2021.105918

    CrossRef Google Scholar

    [7] H. Bailung, S. K. Sharma and Y. Nakamura, Observation of Peregrine Solitons in a Multicomponent Plasma with Negative Ions, Phys. Rev. Lett., 2011, 107, 255005. doi: 10.1103/PhysRevLett.107.255005

    CrossRef Google Scholar

    [8] J. Chu and I. Lin, Direct observation of Coulomb crystals and liquids in strongly coupled RF dusty plasmas, Phys. Rev. Let., 1994, 72, 4009-4012. doi: 10.1103/PhysRevLett.72.4009

    CrossRef Google Scholar

    [9] H. N. Chan, R. H. J. Grimshaw and K. W. Chow, Modeling internal rogue waves in a long wave-short wave resonance framework, Phys. Rev. Flui., 2018, 3, 124801. doi: 10.1103/PhysRevFluids.3.124801

    CrossRef Google Scholar

    [10] D. Chouhan, V. Mishra and H. M. Srivastava, Bernoulli wavelet method for numerical solution of anomalous infiltration and diffusion modeling by nonlinear fractional differential equations of variable order, Resu. Appl. Math., 2021, 10, 100146. doi: 10.1016/j.rinam.2021.100146

    CrossRef Google Scholar

    [11] L. Draper, Freak' ocean waves, Marine Observer, 1965, 35, 193-195.

    Google Scholar

    [12] W. F. El-Taibanya, N. M. El-Siragy, E. E. Behery, A. A. El-Bendary and R. M. Taha, Dust acoustic waves in a dusty plasma containing hybrid Cairns-Tsallis-distributed electrons and variable size dust grains, 2019, 58, 151-158.

    Google Scholar

    [13] R. M. El-Shiekh, Novel solitary and shock wave solutions for the generalized variable-coefficients (2+1)-dimensional KP-Burger equation arising in dusty plasma, Chin. Jour. Phys., 2021, 71, 341-350. doi: 10.1016/j.cjph.2021.03.006

    CrossRef Google Scholar

    [14] S. A. El-Wakil, E. M. Abulwafa, M. A. Zahran and A. A. Mahmoud, Time-fractional KdV equation: formulation and solution using variational methods, Nonl. Dyn., 2011, 65, 55-63. doi: 10.1007/s11071-010-9873-5

    CrossRef Google Scholar

    [15] Y. Gao and Z. Zhang, Modelling and Analysis of Complex Viscous Fluid in Thin Elastic Tubes, Complexity, 2020, 2020(3), 1-10.

    Google Scholar

    [16] X. Gao, Y. Guo and W. Shan, Shallow water in an open sea or a wide channel: Auto- and non-auto-B$\ddot{a} $cklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system, Chaos Soliton. Fract., 2020, 138, 109950. doi: 10.1016/j.chaos.2020.109950

    CrossRef $\ddot{a} $cklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system" target="_blank">Google Scholar

    [17] J. R. Hill and D. A. Mendis, Charged dust in the outer planetary magnetospheres, Moon Plan., 1979, 21, 3-16. doi: 10.1007/BF00897050

    CrossRef Google Scholar

    [18] N. Hu and S. Deng, The Modified Kadomtsev-Petviashvili Equation with Binary Bell Polynomials, Jour. Appl. Math. Phys., 2014, 2, 587-592. doi: 10.4236/jamp.2014.27065

    CrossRef Google Scholar

    [19] C. Lin and X. Zhang, Analytical study of nonlinear dust acoustic waves in two-dimensional dust plasma with vortex-like ion distribution, Comm. Nonl. Sci. Nume. Simu., 2007, 12, 328-335. doi: 10.1016/j.cnsns.2005.03.006

    CrossRef Google Scholar

    [20] A. A. Mahmoud and R. E. Tolba, Nonlinear dust-acoustic waves due to the interaction of streaming protons and electrons with dusty plasma, Chao. Soli. Frac., 2019, 118, 320-327. doi: 10.1016/j.chaos.2018.12.004

    CrossRef Google Scholar

    [21] A. A. Mahmoud, Time-fractional effect on dust-acoustic double-layer waves in four-component dusty plasma, Res. Phys., 2019, 14, 102351.

    Google Scholar

    [22] B. B. Mouhammadoul, C. Alim, G. L. Tiofack and A. Mohamadou, Modulated positron-acoustic waves and rogue waves in a magnetized plasma system with nonthermal electrons and positrons, Astr. Spac. Sci., 2020, 365, 90. doi: 10.1007/s10509-020-03805-6

    CrossRef Google Scholar

    [23] S. I. Popel, A. I. Kassem, Y. N. Izvekova and L. M. Zelenyi, Lower-hybrid turbulence in the near-surface lunar dusty plasmas, Phys. Lett. A, 2020, 384(26), 126627. doi: 10.1016/j.physleta.2020.126627

    CrossRef Google Scholar

    [24] S. I. Popel, A. P. Golub', A. I. Kassem and L. M. Zelenyi, Dust dynamics in the lunar dusty plasmas: effects of magnetic fields and dust charge variations, Phys. Plasmas., 2022, 29(01), 013701. doi: 10.1063/5.0077732

    CrossRef Google Scholar

    [25] K. P. Punam, K. M. Uttam, D. Amiya and S. Asit, Phase plane analysis and integrability via B$\ddot{a} $cklund transformation of nucleus-acoustic waves in white dwarf, Cinese J. Phys., 2021, 73, 534-545.

    $\ddot{a} $cklund transformation of nucleus-acoustic waves in white dwarf" target="_blank">Google Scholar

    [26] N. N. Rao, P. K. Shukla and M. Yu, Dust-acoustic waves in dusty plasma, Planet. Space Sci., 1990, 38, 543. doi: 10.1016/0032-0633(90)90147-I

    CrossRef Google Scholar

    [27] A. Sabetkar and D. D. Davoud, Role of superthermality on dust acoustic structures in the frame of a modified Zakharov-Kuznetsov equation in magnetized dusty plasma, Phys. Scr., 2015, 90, 035603. doi: 10.1088/0031-8949/90/3/035603

    CrossRef Google Scholar

    [28] W. Sun, B. Tian, R. Liu and D. Liu, Dust ion-acoustic rogue waves in a three-species ultracold quantum dusty plasmas, Anna. Phys., 2014, 349, 366-373. doi: 10.1016/j.aop.2014.06.023

    CrossRef Google Scholar

    [29] J. Sun, Z. Zhang, H. Dong and H. Yang, Dust acoustic rogue waves of fractional-order model in dusty plasma, Commu. Theo. Phys., 2020, 72, 125001. doi: 10.1088/1572-9494/abb7d7

    CrossRef Google Scholar

    [30] G. S. Selwyn, J. Singh and R. S. Bennett, In situ laser diagnostic studies of plasma-generated particulate contamination, J. Vac. Sci. Technol. A, 1989, 7, 2758. doi: 10.1116/1.576175

    CrossRef Google Scholar

    [31] H. Thomas, G. E. Morfill, V. Demmel, J. Goree, B. Feuerbacher and D. Mohlmann, Plasma Crystal: Coulomb Crystallization in a Dusty Plasma, Phys. Rev. Let., 1994, 73, 652-655. doi: 10.1103/PhysRevLett.73.652

    CrossRef Google Scholar

    [32] J. Tamang, K. Sarkar and A. Saha, Solitary wave solution and dynamic transition of dust ion acoustic waves in a collisional nonextensive dusty plasma with ionization effect, Phys. A, 2018, 505, 18-34. doi: 10.1016/j.physa.2018.02.213

    CrossRef Google Scholar

    [33] P. Veeresha, D. G. Prakasha, N. Magesh, A. J. Christopher and U. S. Deepak, Solution for fractional potential KdV and Benjamin equations using the novel technique, Jour. Ocea. Engi. Sci., 2021, 6(3), 11.

    Google Scholar

    [34] M. Xu, Y. Chen and F. Cui, A simplified refractive index description model for dusty plasma flow field's optical measurement, Optik, 2021, 228, 166144. doi: 10.1016/j.ijleo.2020.166144

    CrossRef Google Scholar

    [35] X. Zhang and Y. Chen, Deformation rogue wave to the (2+1)-dimensional KdV equation, Nonl. Dyn., 2017, 90, 755-763. doi: 10.1007/s11071-017-3757-x

    CrossRef Google Scholar

Figures(6)

Article Metrics

Article views(1444) PDF downloads(192) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint