Citation: | Yanqiong Lu, Ruyun Ma. MULTIPLE POSITIVE SOLUTIONS OF THE DISCRETE DIRICHLET PROBLEM WITH ONE-DIMENSIONAL PRESCRIBED MEAN CURVATURE OPERATOR[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 841-857. doi: 10.11948/20200033 |
We shall discuss the existence and multiplicity of positive solutions for the discrete Dirichlet problem with one-dimensional prescribed mean curvature operator. Based on the critical point theory, we shall show the existence of either one, or two, or three, or infinity many positive solutions depending on the asymptotic behavior of nonlinearity near zero.
[1] | R. P. Agarwal and D. O'Regan, Boundary value problems for discrete equations, Appl. Math. Lett., 1997, 10, 83–89. |
[2] | L. J. Alías and B. Palmer, On the Gaussian curvature of maximal surfaces and the Calabi-Bernstein theorems, Bull. Lond. Math. Soc., 2001, 33, 454–458. doi: 10.1017/S0024609301008220 |
[3] | C. Bereanu, P. Jebelean and P. J. Torres, Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space, J. Funct. Anal., 2013, 265(4), 644–659. doi: 10.1016/j.jfa.2013.04.006 |
[4] | C. Bereanu and J. Mawhin, Existence and multiplicity results for nonlinear second order difference equations with Dirichlet boundary conditions, Math. Bohem., 2006, 131(2), 145–160. doi: 10.21136/MB.2006.134087 |
[5] | C. Bereanu and J. Mawhin, Boundary value problems for second-order nonlinear difference equations with discrete ϕ-Laplacian and singular ϕ, J. Difference Equ. Appl. 2008, 14(10–11), 1099–1118. doi: 10.1080/10236190802332290 |
[6] | C. Bereanu and H. B. Thompson, Periodic solutions of second order nonlinear difference equations with discrete ϕ-Laplacian, J. Math. Anal. Appl., 2007, 330, 1002–1015. doi: 10.1016/j.jmaa.2006.07.104 |
[7] | A. Cabada and N. Dimitrov, Existence of solutions of nth-order nonlinear difference equations with general boundary conditions, Acta Math. Sci. Ser. B (Engl. Ed. ), 2020, 40(1), 226–236. |
[8] | E. Calabi, Examples of Bernstein problems for some nonlinear equations, Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, 223–230. |
[9] | T. Chen, R. Ma and Y. Liang, Multiple positive solutions of second-order nonlinear difference equations with discrete singular ϕ-Laplacian, J. Difference Equ. Appl., 2019, 25(1), 38–55. doi: 10.1080/10236198.2018.1554064 |
[10] | S. Cheng and S. Yao, Maximal spacelike hypersurface in the Lorente-Minkowski spaces, Ann. Math., 1976, 104, 407–419. doi: 10.2307/1970963 |
[11] | A. Chinní, B. Di Bella, P. Jebelean and R. Precup, A four-point boundary value problem with singular ϕ-Laplacian, J. Fixed Point Theory Appl., 2019, 21(2), 1–16. doi: 10.1007/s11784-019-0703-1 |
[12] | I. Coelho, C. Corsato, F. Obersnel and P. Omari, Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-Curvature equation, Adv. Nonlinear stud. 2012, 12(3), 621–638. |
[13] | C. Corsato, F. Obersnel, P. Omari and S. Rivetti, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space, J. Math. Anal. Appl., 2013, 405, 227–239. doi: 10.1016/j.jmaa.2013.04.003 |
[14] | E. M. Elsayed, F. Alzahrani and H. S. Alayachi, Formulas and properties of some class of nonlinear difference equations, J. Comput. Anal. Appl., 2018, 24(8), 1517–1531. |
[15] | P. Jebelean and R. Precup, Symmetric positive solutions to a singular ϕ-Laplace equation, J. Lond. Math. Soc., 2019, 99(2), 495–515. doi: 10.1112/jlms.12183 |
[16] | P. Jebelean and C. Şerban, Fisher-Kolmogorov type perturbations of the relativistic operator: differential vs. difference, Proc. Amer. Math. Soc., 2018, 146(5), 2005–2014. doi: 10.1090/proc/13978 |
[17] | W. G. Kelley and A. C. Peterson, Difference equations. An introduction with applications, Second edition, Harcourt/Academic Press, San Diego, CA, 2001, x+403 pp. |
[18] | R. Luca, Existence of positive solutions for a semipositone discrete boundary value problem, Nonlinear Anal. Model. Control, 2019, 24(4), 658–678. |
[19] | R. Luca, Positive solutions for a semipositone nonlocal discrete boundary value problem, Appl. Math. Lett., 2019, 92, 54–61. doi: 10.1016/j.aml.2019.01.007 |
[20] | R. Ma, H. Gao and Y. Lu, Global structure of radial positive solutions for a prescribed mean curvature problem in a ball, J. Funct. Anal., 2016, 270(7), 2430–2455. doi: 10.1016/j.jfa.2016.01.020 |
[21] | R. Ma and Y. Lu, Multiplicity of positive solutions for second order nonlinear Dirichlet problem with one-dimension Minkowski-curvature operator, Adv. Nonlinear Stud., 2015, 15(4), 789–803. |
[22] | P. J. McKenna and W. Reichel, Gidas-Ni-Nirenberg results for fnite difference equations: Estimates of approximate symmetry, J. Math. Anal. Appl., 2007, 334, 206–222. doi: 10.1016/j.jmaa.2006.12.011 |
[23] | B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math., 2000, 113, 401–410. doi: 10.1016/S0377-0427(99)00269-1 |
[24] | J. Yu, B. Zhu and Z. Guo, Positive solutions for multiparameter semipositone discrete boundary value problems via variational method, Adv. Difference Equations 2008, 15pp, doi:10.1155/2008/840458. |
[25] | G. Zhang and S. Liu, On a class of semipositone discrete boundary value problems, J. Math. Anal. Appl., 2007, 325, 175–182. doi: 10.1016/j.jmaa.2005.12.047 |
[26] | Z. Zhou and J. Ling, Infnitely many positive solutions for a discrete two point nonlinear boundary value problem with ϕc-Laplacian, Appl. Math. Lett., 2019, 91, 28–34. doi: 10.1016/j.aml.2018.11.016 |
[27] | W. Zou and M. Schechter, Critical Point Theory and Its Applications, Springer, 2006, New York, 2006, xii+318 pp |