2021 Volume 11 Issue 2
Article Contents

Yanqiong Lu, Ruyun Ma. MULTIPLE POSITIVE SOLUTIONS OF THE DISCRETE DIRICHLET PROBLEM WITH ONE-DIMENSIONAL PRESCRIBED MEAN CURVATURE OPERATOR[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 841-857. doi: 10.11948/20200033
Citation: Yanqiong Lu, Ruyun Ma. MULTIPLE POSITIVE SOLUTIONS OF THE DISCRETE DIRICHLET PROBLEM WITH ONE-DIMENSIONAL PRESCRIBED MEAN CURVATURE OPERATOR[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 841-857. doi: 10.11948/20200033

MULTIPLE POSITIVE SOLUTIONS OF THE DISCRETE DIRICHLET PROBLEM WITH ONE-DIMENSIONAL PRESCRIBED MEAN CURVATURE OPERATOR

  • Corresponding author: Email: linmu8610@163.com(Y. Lu) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (Nos. 11901464, 11801453, 11671322) and the Young Teachers'Scientifc Research Capability Upgrading project of Northwest Normal University(NWNU-LKQN2020-20)
  • We shall discuss the existence and multiplicity of positive solutions for the discrete Dirichlet problem with one-dimensional prescribed mean curvature operator. Based on the critical point theory, we shall show the existence of either one, or two, or three, or infinity many positive solutions depending on the asymptotic behavior of nonlinearity near zero.

    MSC: 34B15, 34B18
  • 加载中
  • [1] R. P. Agarwal and D. O'Regan, Boundary value problems for discrete equations, Appl. Math. Lett., 1997, 10, 83–89.

    Google Scholar

    [2] L. J. Alías and B. Palmer, On the Gaussian curvature of maximal surfaces and the Calabi-Bernstein theorems, Bull. Lond. Math. Soc., 2001, 33, 454–458. doi: 10.1017/S0024609301008220

    CrossRef Google Scholar

    [3] C. Bereanu, P. Jebelean and P. J. Torres, Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space, J. Funct. Anal., 2013, 265(4), 644–659. doi: 10.1016/j.jfa.2013.04.006

    CrossRef Google Scholar

    [4] C. Bereanu and J. Mawhin, Existence and multiplicity results for nonlinear second order difference equations with Dirichlet boundary conditions, Math. Bohem., 2006, 131(2), 145–160. doi: 10.21136/MB.2006.134087

    CrossRef Google Scholar

    [5] C. Bereanu and J. Mawhin, Boundary value problems for second-order nonlinear difference equations with discrete ϕ-Laplacian and singular ϕ, J. Difference Equ. Appl. 2008, 14(10–11), 1099–1118. doi: 10.1080/10236190802332290

    CrossRef Google Scholar

    [6] C. Bereanu and H. B. Thompson, Periodic solutions of second order nonlinear difference equations with discrete ϕ-Laplacian, J. Math. Anal. Appl., 2007, 330, 1002–1015. doi: 10.1016/j.jmaa.2006.07.104

    CrossRef Google Scholar

    [7] A. Cabada and N. Dimitrov, Existence of solutions of nth-order nonlinear difference equations with general boundary conditions, Acta Math. Sci. Ser. B (Engl. Ed. ), 2020, 40(1), 226–236.

    Google Scholar

    [8] E. Calabi, Examples of Bernstein problems for some nonlinear equations, Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, 223–230.

    Google Scholar

    [9] T. Chen, R. Ma and Y. Liang, Multiple positive solutions of second-order nonlinear difference equations with discrete singular ϕ-Laplacian, J. Difference Equ. Appl., 2019, 25(1), 38–55. doi: 10.1080/10236198.2018.1554064

    CrossRef Google Scholar

    [10] S. Cheng and S. Yao, Maximal spacelike hypersurface in the Lorente-Minkowski spaces, Ann. Math., 1976, 104, 407–419. doi: 10.2307/1970963

    CrossRef Google Scholar

    [11] A. Chinní, B. Di Bella, P. Jebelean and R. Precup, A four-point boundary value problem with singular ϕ-Laplacian, J. Fixed Point Theory Appl., 2019, 21(2), 1–16. doi: 10.1007/s11784-019-0703-1

    CrossRef Google Scholar

    [12] I. Coelho, C. Corsato, F. Obersnel and P. Omari, Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-Curvature equation, Adv. Nonlinear stud. 2012, 12(3), 621–638.

    Google Scholar

    [13] C. Corsato, F. Obersnel, P. Omari and S. Rivetti, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space, J. Math. Anal. Appl., 2013, 405, 227–239. doi: 10.1016/j.jmaa.2013.04.003

    CrossRef Google Scholar

    [14] E. M. Elsayed, F. Alzahrani and H. S. Alayachi, Formulas and properties of some class of nonlinear difference equations, J. Comput. Anal. Appl., 2018, 24(8), 1517–1531.

    Google Scholar

    [15] P. Jebelean and R. Precup, Symmetric positive solutions to a singular ϕ-Laplace equation, J. Lond. Math. Soc., 2019, 99(2), 495–515. doi: 10.1112/jlms.12183

    CrossRef Google Scholar

    [16] P. Jebelean and C. Şerban, Fisher-Kolmogorov type perturbations of the relativistic operator: differential vs. difference, Proc. Amer. Math. Soc., 2018, 146(5), 2005–2014. doi: 10.1090/proc/13978

    CrossRef Google Scholar

    [17] W. G. Kelley and A. C. Peterson, Difference equations. An introduction with applications, Second edition, Harcourt/Academic Press, San Diego, CA, 2001, x+403 pp.

    Google Scholar

    [18] R. Luca, Existence of positive solutions for a semipositone discrete boundary value problem, Nonlinear Anal. Model. Control, 2019, 24(4), 658–678.

    Google Scholar

    [19] R. Luca, Positive solutions for a semipositone nonlocal discrete boundary value problem, Appl. Math. Lett., 2019, 92, 54–61. doi: 10.1016/j.aml.2019.01.007

    CrossRef Google Scholar

    [20] R. Ma, H. Gao and Y. Lu, Global structure of radial positive solutions for a prescribed mean curvature problem in a ball, J. Funct. Anal., 2016, 270(7), 2430–2455. doi: 10.1016/j.jfa.2016.01.020

    CrossRef Google Scholar

    [21] R. Ma and Y. Lu, Multiplicity of positive solutions for second order nonlinear Dirichlet problem with one-dimension Minkowski-curvature operator, Adv. Nonlinear Stud., 2015, 15(4), 789–803.

    Google Scholar

    [22] P. J. McKenna and W. Reichel, Gidas-Ni-Nirenberg results for fnite difference equations: Estimates of approximate symmetry, J. Math. Anal. Appl., 2007, 334, 206–222. doi: 10.1016/j.jmaa.2006.12.011

    CrossRef Google Scholar

    [23] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math., 2000, 113, 401–410. doi: 10.1016/S0377-0427(99)00269-1

    CrossRef Google Scholar

    [24] J. Yu, B. Zhu and Z. Guo, Positive solutions for multiparameter semipositone discrete boundary value problems via variational method, Adv. Difference Equations 2008, 15pp, doi:10.1155/2008/840458.

    CrossRef Google Scholar

    [25] G. Zhang and S. Liu, On a class of semipositone discrete boundary value problems, J. Math. Anal. Appl., 2007, 325, 175–182. doi: 10.1016/j.jmaa.2005.12.047

    CrossRef Google Scholar

    [26] Z. Zhou and J. Ling, Infnitely many positive solutions for a discrete two point nonlinear boundary value problem with ϕc-Laplacian, Appl. Math. Lett., 2019, 91, 28–34. doi: 10.1016/j.aml.2018.11.016

    CrossRef Google Scholar

    [27] W. Zou and M. Schechter, Critical Point Theory and Its Applications, Springer, 2006, New York, 2006, xii+318 pp

    Google Scholar

Article Metrics

Article views(2838) PDF downloads(527) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint