Citation: | Ling Mi, Chuan Chen. THE EXACT BLOW-UP RATE OF LARGE SOLUTIONS TO INFINITY-LAPLACIAN EQUATION[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 858-873. doi: 10.11948/20200043 |
Under new conditions on weight functions $ b(x) $, this paper mainly considers the exact boundary behavior of solutions to the following boundary blow-up elliptic problems $ \triangle_{\infty} u = b(x)f(u), \ x\in \Omega, \ u|_{\partial \Omega} = +\infty $ for more general nonlinearities $ f, $ where $ \Omega $ is a bounded domain with smooth boundary in $ \mathbb R^N $, and $ b \in C(\bar{ \Omega}) $ which is positive in $ \Omega $.
[1] | G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat., 1967, 6, 551–561. doi: 10.1007/BF02591928 |
[2] | G. Aronson, M. Crandall and P. Juutinen, A tour of the theory of absolute minimizing functions, Bull. Amer. Math. Soc., 2004, 41, 439–505. doi: 10.1090/S0273-0979-04-01035-3 |
[3] | M. Benyam and A. Mohammed, Infnity-Laplacian type equations and their associated Dirichlet problems, Complex Var. Elliptic Equ., 2018, 1–31. |
[4] | M. Benyam and A. Mohammed, Comparison principles for infnity-Laplace equations in Finsler metrics, Nonlinear Anal., 2020, 190, 111605. doi: 10.1016/j.na.2019.111605 |
[5] | M. Crandall and P. Lions, Viscosity solutions and Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 1983, 277, 1–42. doi: 10.1090/S0002-9947-1983-0690039-8 |
[6] | M. Crandall, L. Evans and P. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 1984, 282, 487–502. doi: 10.1090/S0002-9947-1984-0732102-X |
[7] | M. Crandall, H. Ishii and P. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 1992, 27, 1–67. doi: 10.1090/S0273-0979-1992-00266-5 |
[8] | M. Crandall, A visit with the 1-Laplace equation, in: Calculus of Variations and Nonlinear Partial Differential Equations, Lecture Notes in Math. 1927, 75–122, Springer, Berlin, 2008. |
[9] | R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Ration. Mech. Anal., 1993, 123(1), 51–74. doi: 10.1007/BF00386368 |
[10] | P. Juutinen and J. Rossi, Large solutions for the infnity Laplacian, Adv. Calc. Var., 2008, 1, 271–289. |
[11] | A. Mohammed and S. Mohammed, Boundary blow-up solutions to degenerate elliptic equations with non-monotone inhomogeneous terms, Nonlinear Anal., 2012, 75, 3249–3261. doi: 10.1016/j.na.2011.12.026 |
[12] | A. Mohammed and S. Mohammed, On boundary blow-up solutions to equations involving the ∞-Laplacian, Nonlinear Anal., 2011, 74, 5238–5252. doi: 10.1016/j.na.2011.04.022 |
[13] | L. Mi and B. Liu, Second order expansion for blowup solutions of semilinear elliptic problems, Nonlinear Anal., 2012, 75, 2591–2613. doi: 10.1016/j.na.2011.11.002 |
[14] | L. Mi, Blow-up rates of large solutions for infnity Laplace equations, Appl. Math. Comput., 2017, 298, 36–44. |
[15] | V. Maric, Regular Variation and Differential Equations, Lecture Notes in Math., vol. 1726, Springer-Verlag, Berlin, 2000. |
[16] | S. Resnick, Extreme Values, Regular Variation, and Point Processes, SpringerVerlag, New York, Berlin, 1987. |
[17] | R. Seneta, Regular varying functions, Lecture Notes in Math., vol. 508, Springer-Verlag, 1976. |
[18] | W. Wang, H. Gong and S. Zheng, Asymptotic estimates of boundary blow-up solutions to the infnity Laplace equations, J. Differential Equations, 2014, 256, 3721–3742. doi: 10.1016/j.jde.2014.02.018 |
[19] | W. Wang, H. Gong, X. He and S. Zheng, Asymptotic boundary estimates to infnity Laplace equations with Γ-varying nonlinearity, J. Math. Anal. Appl., 2016, 436, 39–65. doi: 10.1016/j.jmaa.2015.11.046 |
[20] | Z. Zhang, Y. Ma, L. Mi and X. Li, Blow-up rates of large solutions for elliptic equations, J. Differential Equations, 2010, 249, 180–199. doi: 10.1016/j.jde.2010.02.019 |
[21] | Z. Zhang, Boundary behavior of large viscosity solutions to infnity Laplace equations, Z. Angew. Math. Phys., 2015, 66, 1453–1472. doi: 10.1007/s00033-014-0470-1 |
[22] | Z. Zhang, Exact boundary behavior of large solutions to semilinear elliptic equations with a nonlinear gradient term, Science China Math., 2020, 63, 559–574. doi: 10.1007/s11425-017-9275-y |