2021 Volume 11 Issue 2
Article Contents

Lei Fu, Huanhe Dong, Chaudry Masood Khalique, Hongwei Yang. CONSERVATION LAWS, EXACT SOLUTIONS OF TIME-SPACE FRACTIONAL GENERALIZED GINZBURG-LANDAU EQUATION FOR SHALLOW WAKE FLOWS[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 874-891. doi: 10.11948/20200053
Citation: Lei Fu, Huanhe Dong, Chaudry Masood Khalique, Hongwei Yang. CONSERVATION LAWS, EXACT SOLUTIONS OF TIME-SPACE FRACTIONAL GENERALIZED GINZBURG-LANDAU EQUATION FOR SHALLOW WAKE FLOWS[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 874-891. doi: 10.11948/20200053

CONSERVATION LAWS, EXACT SOLUTIONS OF TIME-SPACE FRACTIONAL GENERALIZED GINZBURG-LANDAU EQUATION FOR SHALLOW WAKE FLOWS

  • In this study, starting from the rigid-lid shallow water equations, an amplitude evolution equation is derived by using the multi-scale and perturbation analysis method. The resulting equation has complex coefficients and is called (2+1)-dimensional generalized Ginzburg-Landau(gGL) equation. Then, the (2+1)-dimensional time-space fractional gGL equation is obtained by using the semi-inverse method and fractional variational principle in the first time. Finally, the conservation laws and exact solutions of the fractional gGL equation are discussed on the basis of Lie symmetry analysis and $ {\rm exp}(-\phi(\zeta)) $-expansion method. By analyzing these solutions, we conclude that there are solitary waves and rogue waves in shallow wake flows.

    MSC: 34A08, 76D25, 35Q56, 35L65
  • 加载中
  • [1] S. Arshed, Soliton solutions of fractional complex Ginzburg-Landau equation with Kerr law and non-Kerr law media, Optik, 2018, 160, 322–332. doi: 10.1016/j.ijleo.2018.02.022

    CrossRef Google Scholar

    [2] O. P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems, Journal of Mathematical Analysis and Applications, 2002, 272(1), 368–379. doi: 10.1016/S0022-247X(02)00180-4

    CrossRef Google Scholar

    [3] J. Biazar and F. Goldoust, An algorithm for systems of nonlinear ordinary differential equations based on legendre wavelets, Journal of Mathematics, 2019, 51(4), 65–80.

    Google Scholar

    [4] A. Bekir, O. Guner, A. H. Bhrawy and A. Biswas, Solving nonlinear fractional differential equations using exp-function and (G'/G)-expansion methods, Romanian Journal of Physics, 2015, 60(3–4), 360–378.

    Google Scholar

    [5] I. Chaddad and A. A. Kolyshkin, Ginzburg-Landau model: an amplitude evolution equation for shallow wake flows, World Academy of Science, Engineering and Technology, 2008, 2(2), 60–64.

    Google Scholar

    [6] W. Deng, Finite element method for the space and time fractional Fokker-planck equation, SIAM Journal on Numerical Analysis, 2018, 47(1), 204–226.

    Google Scholar

    [7] G. Ephim, E. Alexander and S. Alex, On helical behavior of turbulence in the ship wake, Journal of Hydrodynamics, 2013, 25(1), 83–90. doi: 10.1016/S1001-6058(13)60341-8

    CrossRef Google Scholar

    [8] O. Guner, H. Atik and A. A. Kayyrzhanovich, New exact solution for space-time fractional diferential equation via (G'/G)-expansion method, Optik, 2017, 130, 696–701. doi: 10.1016/j.ijleo.2016.10.116

    CrossRef Google Scholar

    [9] O. Guner, Exact travelling wave solutions to the space-time fractional CalogeroDegasperis equation using different methods, Journal of Applied Analysis and Computation, 2019, 9(2), 428–439. doi: 10.11948/2156-907X.20160254

    CrossRef Google Scholar

    [10] J. He, Variational principles for some nonlinear partial differential equations with variable coefcients, Chaos, Solitons and Fractals, 2004, 19(4), 847–851. doi: 10.1016/S0960-0779(03)00265-0

    CrossRef Google Scholar

    [11] G. Jumarie, Modifed Riemann-Liouville derivative and fractional taylor series of nondifferentiable functions further results, Computers and Mathematics with Applications, 2006, 51(9), 1367–1376.

    Google Scholar

    [12] G. Jumarie, Table of some basic fractional calculus formulae derived from a modifed Riemann-Liouville derivative for non-differentiable functions, Applied Mathematics Letters, 2009, 22(3), 378–385. doi: 10.1016/j.aml.2008.06.003

    CrossRef Google Scholar

    [13] M. Khalique and G. Magalakwe, Analysis of Lie symmetries with conservation laws for the (3+1) dimensional time-fractional mKdV-ZK equation in ionacoustic waves, Quaestiones Mathematicae, 2017, 90(2), 1105–1113. doi: 10.1007%2Fs11071-017-3712-x

    CrossRef Google Scholar

    [14] A. A. Kolyshkin and M. S. Ghidaoui, Stability analysis of shallow wake flows, Journal of Fluid Mechanics, 2003, 494, 355–377. doi: 10.1017/S0022112003006116

    CrossRef Google Scholar

    [15] Q. Liu, R. Zhang, L. Yang and J. Song, A new model equation for nonlinear Rossby waves and some of its solutions, Physics Letters A, 2019, 383(6), 514– 525. doi: 10.1016/j.physleta.2018.10.052

    CrossRef Google Scholar

    [16] Q. Liu and L. Chen, Time-space fractional model for complex cylindrical ionacoustic waves in ultrarelativistic plasmas, Complexity, 2020, 2020, 9075823.

    Google Scholar

    [17] J. Manafan and M. Lakestani, Application of tan (ϕ/2)-expansion method for solving the Biswas-Milovic equation for Kerr law nonlinearity, Optik, 2016, 127(4), 2040–2054. doi: 10.1016/j.ijleo.2015.11.078

    CrossRef Google Scholar

    [18] J. E. Okeke, R. Narain and K. S. Govinder, New exact solutions of a generalised Boussinesq equation with damping term and a system of variant Boussinesq equations via double reduction theory, Journal of Applied Analysis and Computation, 2018, 8(2), 471–485. doi: 10.11948/2018.471

    CrossRef Google Scholar

    [19] K. Singla and R. K. Gupta, Space-time fractional nonlinear partial differential equations: symmetry analysis and conservation laws, Nonlinear Dynamics, 2017, 89(1), 321–331. doi: 10.1007/s11071-017-3456-7

    CrossRef Google Scholar

    [20] K. Singla and R. K. Gupta, On invariant analysis of some time fractional nonlinear systems of partial differential equations. I, Journal of Mathematical Physics, 2016, 57(10), 101504. doi: 10.1063/1.4964937

    CrossRef Google Scholar

    [21] K. Singla and R. K. Gupta, On invariant analysis of space-time fractional nonlinear systems of partial differential equations. , Journal of Mathematical Physics, 2017, 58(5), 051503. doi: 10.1063/1.4982804

    CrossRef Google Scholar

    [22] K. Singla and R. K. Gupta, Generalized Lie symmetry approach for nonlinear systems of fractional differential equations. , Journal of Mathematical Physics, 2017, 58(6), 061501. doi: 10.1063/1.4984307

    CrossRef Google Scholar

    [23] S. Sahoo and S. S. Ray, Analysis of Lie symmetries with conservation laws for the (3+1) dimensional time-fractional mKdV-ZK equation in ion-acoustic waves, Nonlinear Dynamics, 2017, 90(2), 1105–1113. doi: 10.1007/s11071-017-3712-x

    CrossRef Google Scholar

    [24] G. Wu and E. Lee, Fractional variational iteration method and its application, Physics Letters A, 2010, 374(5), 2506–2509.

    Google Scholar

    [25] T. Xu, F. Gao, T. Hao, X. Meng, Z. Ma, C. Zhang and H. Chen, Two-layer global synchronous pulse width modulation method for attenuating circulating leakage current in PV station, IEEE Transactions on Industrial Electronics, 2018, 65, 8005–8017. doi: 10.1109/TIE.2018.2798596

    CrossRef Google Scholar

    [26] X. Yang, F. Gao and H. M. Srivastava, A new computational approach for solving nonlinear local fractional PDEs, Journal of Computational and Applied Mathematics, 2018, 239, 285–296.

    Google Scholar

    [27] H. Yang, J. Sun and C. Fu, Time-fractional Benjamin-Ono equation for algebraic gravity solitary waves in baroclinic atmosphere and exact multi-soliton solution as well as interaction, Communications in Nonlinear Science and Numerical Simulation, 2019, 71, 187–201. doi: 10.1016/j.cnsns.2018.11.017

    CrossRef Google Scholar

    [28] X. Yang, J. A. T. Machado and D. Baleanu, Exact traveling-wave solution for local fractional Boussinesq equation in fractal domain, Fractals, 2017, 25(4), 1740006. doi: 10.1142/S0218348X17400060

    CrossRef Google Scholar

    [29] R. Zhang, L. Yang, Q. Liu and X. Yin, Dynamics of nonlinear Rossby waves in zonally varying flow with spatial-temporal varying topography, Applied Mathematics and Computation, 2019, 346, 666–679. doi: 10.1016/j.amc.2018.10.084

    CrossRef Google Scholar

    [30] B. Zheng and C. Wen, Exact solutions for fractional partial differential equations by a new fractional sub-equation method, Advances in Difference Equation, 2013, 2013(1), 199. doi: 10.1186/1687-1847-2013-199

    CrossRef Google Scholar

    [31] R. Zhang and L. Yang, Nonlinear Rossby waves in zonally varying flow under generalized beta approximation, Dynamics of Atmospheres and Oceans, 2019, 85, 16–27. doi: 10.1016/j.dynatmoce.2018.11.001

    CrossRef Google Scholar

    [32] X. Zhang, J. Jiang, Y. Wu and Y. Cui, Existence and asymptotic properties of solutions for a nonlinear Schrodinger elliptic equation from geophysical fluid flows, Applied Mathematics Letters, 2019, 90, 229–237. doi: 10.1016/j.aml.2018.11.011

    CrossRef Google Scholar

Article Metrics

Article views(2996) PDF downloads(389) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint