Citation: | Dragos-Patru Covei. AN ELLIPTIC PARTIAL DIFFERENTIAL EQUATION MODELLING A PRODUCTION PLANNING PROBLEM[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 903-910. doi: 10.11948/20200112 |
Our purpose is to investigate the existence and uniqueness of positive solutions for an elliptic partial differential equation. The considered problem describes many real-world models and the obtained solutions can be useful in industry and manufacturing.
[1] | R. L. Alves, Multiplicity and extremal regions for existence of positive solutions for singular problems in $ \mathbb{R}^N $, Doctoral Thesis, Universidade de Brasília, Departamento de Matemática, Brasília, 2019. |
[2] | A. Baalal and M. Berghout, The dirichlet problem for nonlinear elliptic equations with variable exponent, J. Appl. Anal. Comput., 2019, 9(1), 295-313. |
[3] | G. Barles and F. Murat, Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions, Arch. Rational Mech. Anal., 1995, 133(1), 77-101. doi: 10.1007/BF00375351 |
[4] | A. Bensoussan, S. P. Sethi, R. Vickson and N. Derzko, Stochastic production planning with production constraints, Siam J. Control and optimization, 1984, 22(6), 920-935. doi: 10.1137/0322060 |
[5] | A. Cadenillas, P. Lakner and M. Pinedo, Optimal production management when demand depends on the business cycle, Operations Research, 2013, 61(4), 1046- 1062. doi: 10.1287/opre.2013.1181 |
[6] | C. E. Canepa, D. P. Covei and T. A. Pirvu, A stochastic production planning problem, Fixed Point Theory, accepted for publication. |
[7] | Y. Chang, M. Li, C. Yue et al., Mathematical model for the enterprise competitive ability and performance through a particular emden-fowler equation u" - n-q-1u(n) = 0, Acta Math. Sci., 2018, 38(4), 1311-1321. |
[8] | D. P. Covei, Symmetric solutions for an elliptic partial differential equation that arises in stochastic production planning with production constraints, Appl. Math. Comput., 2019, 350, 190-197. |
[9] | D. P. Covei and T. A. Pirvu, An elliptic partial differential equation and its application, Appl. Math. Lett., 2020, 101, 1-7. |
[10] | J. Dong, S. M. Djouadi, T. Kuruganti and M. M. Olama, Augmented optimal control for buildings under high penetration of solar photovoltaic generation, 2017 IEEE Conference on Control Technology and Applications (CCTA), 2158- 2163. |
[11] | J. Dong, P. T. Kuruganti, A. A. Malikopoulos et al., Home energy management based on optimal production control scheduling with unknown regime switching, 2017 American Control Conference (ACC), 2054-2059. |
[12] | J. Dong, A. A. Malikopoulos, S. Djouadi and T. Kuruganti, Application of optimal production control theory for home energy management in a micro grid, 2016 American Control Conference (ACC), 5014-5019. |
[13] | D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equation of Second Order, Springer-Verlag, New York, 2001. |
[14] | X. He and X. Wu, Multiple sign-changing solutions for a class of semilinear elliptic equations in $ \mathbb{R}^N $, J. Appl. Anal. Comput., 2019, 9(1), 12-30. |
[15] | D. H. Sattinger, Topics in Stability and Bifurcation Theory, Springer Berlin Heidelberg, Berlin, 1973. |
[16] | Y. Sun and S. Li, Structure of ground state solutions of singular semilinear elliptic equations, Nonlinear Anal., 2003, 55(4), 399-417. doi: 10.1016/S0362-546X(03)00244-X |
[17] | X. Zhang, J. Xu, J. Jiang et al., The convergence analysis and uniqueness of blow-up solutions for a dirichlet problem of the general k-hessian equations, App. Math. Lett., 2020, 102, 1-10. |
[18] | Z. Zhang, Boundary behavior of large solutions to the monge-ampére equation in a borderline case, Acta Math. Sin. (Engl. Ser.), 2019, 35, 1190-1204. doi: 10.1007/s10114-019-7524-4 |