Citation: | Qiaoluan Li, Yani Liu, Lina Zhou. FRACTIONAL BOUNDARY VALUE PROBLEM WITH NABLA DIFFERENCE EQUATION[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 911-919. doi: 10.11948/20200118 |
In the paper, using Z-transform technique, we study eigenvalues and eigenfunctions for a fractional boundary value problem with linear nabla difference equation. Furthermore, by topological degree theory and the obtained results of eigenvalues, we get at least one nontrivial solution for relevant nonlinear fractional boundary value problem.
[1] | T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl., 2011, 62(3), 1602-1611. doi: 10.1016/j.camwa.2011.03.036 |
[2] | T. Abdeljawad and D. Baleanu, Fractional differences and integration by parts, J. Comput. Anal. Appl., 2011, 13(3), 574-582. |
[3] | T. Aleroev and E. Kekharsaeva, Boundary value problems for differential equations with fractional derivatives, Integral Trans. Spec. Funct., 2017, 28(12), 900-908. doi: 10.1080/10652469.2017.1381844 |
[4] | R. Almeida1, Fractional differential equations with mixed boundary conditions, Bull. Malays. Math. Sci. Soc., 2019, 42, 1687-1697. doi: 10.1007/s40840-017-0569-6 |
[5] | F. M. Atici and P. W. Eloe, Two-point boundary value problems for finite fractional difference equations, J. Diff. Equa. Appl., 2011, 17(4), 445-456. doi: 10.1080/10236190903029241 |
[6] | Z. Bai, Eigenvalue intervals for a class of fractional boundary value problem, Comput. Math. Appl., 2012, 64(10), 3253-3257. doi: 10.1016/j.camwa.2012.01.004 |
[7] | J. Cheng, The Theory of Fractional Difference Equations, Xiamen University Press, Xiamen, 2010. |
[8] | R. Ferreira, Existence and uniqueness of solution to some discrete fractional boundary value problems of order less than one, J. Diff. Equa. Appl., 2013, 19, 712-718. doi: 10.1080/10236198.2012.682577 |
[9] | D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, San Diego, 1988. |
[10] | K. I. Isife, Existence of solution for some two-point boundary value fractional differential equations, Turkish J. Math., 2018, 42, 2953-2964. doi: 10.3906/mat-1711-21 |
[11] | M. A. Krasnosel'skii and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Springer, New York, 1984. |
[12] | Z. Li and Z. Bai, Existence of solutions for some two-point fractional boundary value problems under barrier strip conditions, Bound. Value Probl., 2019, 2019(1), 1-8. doi: 10.1186/s13661-018-1115-7 |
[13] | T. Ma, Y. Tian, Q. Huo and Y. Zhang, Boundary value problem for linear and nonlinear fractional differential equations, Appl. Math. Lett., 2018, 86, 1-7. doi: 10.1016/j.aml.2018.06.010 |
[14] | N. I. Mahmudov and B. Sami, On impulsive sequential fractional differential equations, J. Comput. Anal. Appl., 2019, 27(1), 269-283. |
[15] | S. T. Sutara and K. D. Kucche, On fractional Volterra integrodifferential equations with fractional integrable impulses, Math. Model. Anal., 2019, 24, 457-477. doi: 10.3846/mma.2019.028 |
[16] | G. Wu and D. Baleanu, Discrete fractional logistic map and its chaos, Nonlinear Dynamics, 2014, 75(1-2), 283-287. doi: 10.1007/s11071-013-1065-7 |
[17] | H. Wu, Asymptotic behavior of solutions of fractional nabla difference equations, Appl. Math. Lett., 2020, 105, 106302. doi: 10.1016/j.aml.2020.106302 |