2021 Volume 11 Issue 2
Article Contents

Qiaoluan Li, Yani Liu, Lina Zhou. FRACTIONAL BOUNDARY VALUE PROBLEM WITH NABLA DIFFERENCE EQUATION[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 911-919. doi: 10.11948/20200118
Citation: Qiaoluan Li, Yani Liu, Lina Zhou. FRACTIONAL BOUNDARY VALUE PROBLEM WITH NABLA DIFFERENCE EQUATION[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 911-919. doi: 10.11948/20200118

FRACTIONAL BOUNDARY VALUE PROBLEM WITH NABLA DIFFERENCE EQUATION

  • Corresponding author: Email: lnazhou@163.com(L. Zhou)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (11971145)
  • In the paper, using Z-transform technique, we study eigenvalues and eigenfunctions for a fractional boundary value problem with linear nabla difference equation. Furthermore, by topological degree theory and the obtained results of eigenvalues, we get at least one nontrivial solution for relevant nonlinear fractional boundary value problem.

    MSC: 26A33, 34A08, 34B09
  • 加载中
  • [1] T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl., 2011, 62(3), 1602-1611. doi: 10.1016/j.camwa.2011.03.036

    CrossRef Google Scholar

    [2] T. Abdeljawad and D. Baleanu, Fractional differences and integration by parts, J. Comput. Anal. Appl., 2011, 13(3), 574-582.

    Google Scholar

    [3] T. Aleroev and E. Kekharsaeva, Boundary value problems for differential equations with fractional derivatives, Integral Trans. Spec. Funct., 2017, 28(12), 900-908. doi: 10.1080/10652469.2017.1381844

    CrossRef Google Scholar

    [4] R. Almeida1, Fractional differential equations with mixed boundary conditions, Bull. Malays. Math. Sci. Soc., 2019, 42, 1687-1697. doi: 10.1007/s40840-017-0569-6

    CrossRef Google Scholar

    [5] F. M. Atici and P. W. Eloe, Two-point boundary value problems for finite fractional difference equations, J. Diff. Equa. Appl., 2011, 17(4), 445-456. doi: 10.1080/10236190903029241

    CrossRef Google Scholar

    [6] Z. Bai, Eigenvalue intervals for a class of fractional boundary value problem, Comput. Math. Appl., 2012, 64(10), 3253-3257. doi: 10.1016/j.camwa.2012.01.004

    CrossRef Google Scholar

    [7] J. Cheng, The Theory of Fractional Difference Equations, Xiamen University Press, Xiamen, 2010.

    Google Scholar

    [8] R. Ferreira, Existence and uniqueness of solution to some discrete fractional boundary value problems of order less than one, J. Diff. Equa. Appl., 2013, 19, 712-718. doi: 10.1080/10236198.2012.682577

    CrossRef Google Scholar

    [9] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, San Diego, 1988.

    Google Scholar

    [10] K. I. Isife, Existence of solution for some two-point boundary value fractional differential equations, Turkish J. Math., 2018, 42, 2953-2964. doi: 10.3906/mat-1711-21

    CrossRef Google Scholar

    [11] M. A. Krasnosel'skii and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Springer, New York, 1984.

    Google Scholar

    [12] Z. Li and Z. Bai, Existence of solutions for some two-point fractional boundary value problems under barrier strip conditions, Bound. Value Probl., 2019, 2019(1), 1-8. doi: 10.1186/s13661-018-1115-7

    CrossRef Google Scholar

    [13] T. Ma, Y. Tian, Q. Huo and Y. Zhang, Boundary value problem for linear and nonlinear fractional differential equations, Appl. Math. Lett., 2018, 86, 1-7. doi: 10.1016/j.aml.2018.06.010

    CrossRef Google Scholar

    [14] N. I. Mahmudov and B. Sami, On impulsive sequential fractional differential equations, J. Comput. Anal. Appl., 2019, 27(1), 269-283.

    Google Scholar

    [15] S. T. Sutara and K. D. Kucche, On fractional Volterra integrodifferential equations with fractional integrable impulses, Math. Model. Anal., 2019, 24, 457-477. doi: 10.3846/mma.2019.028

    CrossRef Google Scholar

    [16] G. Wu and D. Baleanu, Discrete fractional logistic map and its chaos, Nonlinear Dynamics, 2014, 75(1-2), 283-287. doi: 10.1007/s11071-013-1065-7

    CrossRef Google Scholar

    [17] H. Wu, Asymptotic behavior of solutions of fractional nabla difference equations, Appl. Math. Lett., 2020, 105, 106302. doi: 10.1016/j.aml.2020.106302

    CrossRef Google Scholar

Article Metrics

Article views(2217) PDF downloads(416) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint