Citation: | Xing-Ju Chen, Zeng-Qi Ou. EXISTENCE OF NON-TRIVIAL SOLUTIONS FOR THE KIRCHHOFF-TYPE EQUATIONS WITH FUČIK-TYPE RESONANCE AT INFINITY[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 1006-1016. doi: 10.11948/20200128 |
In this paper, we obtain the existence of nontrivial solutions for the Kirchhoff type equation with Fučik-type resonance at infinity by variational methods.
[1] | J. Chen and X. Tang, A non-radially symmetric solution to a class of elliptic equation with Kirchhoff term, Journal of Applied Analysis and Computation, 2019, 9, 1558-1570. doi: 10.11948/2156-907X.20180340 |
[2] | E. N. Dancer and Y. Du, Existence of changing sign solutions for some semilinear problems with jumping nonlinearities at zero, Proc. Roy. Soc. Edinburgh Sect. A, 1994, 124, 1165-1176. doi: 10.1017/S0308210500030171 |
[3] | M. Hsini, Multiplicity results for a Kirchhoff singular problem involving the fractional $p$-Laplacian, Journal of Applied Analysis and Computation. 2019, 9, 884-900. doi: 10.11948/2156-907X.20180140 |
[4] | G. Kirchhoff, Mechanik, Teubner, Leipzig, Germany, 1883. |
[5] | S. Li and Z. Zhang, Sign-changing and multiple solutions theorems for semilinear elliptic boundary value problems with jumping nonlinearities, Acta Math. Sin. (Engl. Ser. ), 2000, 16, 113-122. |
[6] | Z. Liang, F. Li and J. Shi, Positive solutions of Kirchhoff-type non-local elliptic equation: A bifurcation approach, Proc. Roy. Soc. Edinburgh Sect. A, 2017, 147, 875-894. doi: 10.1017/S0308210516000378 |
[7] | F. Li, T. Rong and Z. Liang, Fučik spectrum for the Kirchhoff-type problem and applications, Nonlinear Anal., 2019, 182, 280-302. doi: 10.1016/j.na.2018.12.021 |
[8] | F. Li, S. X, K. X and X. Xue, Dynamic propertiles for nonlinear viscoelastic Kirchhoff-type equation with acoustic control boundary conditions Ⅱ, Journal of Applied Analysis and Computation, 2019, 9, 2318-2332. doi: 10.11948/20190085 |
[9] | J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Mathematics Studies, 1978, 30, 284-346. |
[10] | P. L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys., 1984, 109, 33-97. doi: 10.1007/BF01205672 |
[11] | T. Rong, F. Li and Z. Liang, Existence of nontrivial solutions for Kirchhoff-type problems with jumping nonlinearities, Appl. Math. Lett., 2019, 95, 137-142. doi: 10.1016/j.aml.2019.03.035 |
[12] | J. Sun and C. Tang, Resonance problems for Kirchhoff type equations, Discrete Contin. Dyn. Syst., 2013, 33, 2139-2154. doi: 10.3934/dcds.2013.33.2139 |
[13] | S. Song, S. Chen and C. Tang, Existence of solutions for Kirchhoff type problems with resonance at higher eigenvalues, Discrete Contin. Dyn. Syst., 2016, 36, 6452-6473. |
[14] | S. Song and C. Tang, Resonance problems for the $p$-Laplacian with a nonlinear boundary condition, Nonlinear Anal., 2006, 64, 2007-2021. doi: 10.1016/j.na.2005.07.035 |
[15] | M. Tanaka, Existence of a non-trivial solution for the $p$-Laplacian equation with Fučik type resonance at infinity Ⅱ, Nonlinear Anal. TMA, 2009, 71, 3018-3030. doi: 10.1016/j.na.2009.01.186 |
[16] | M. Tanaka, Existence of a non-trivial solution for the $p$-Laplacian equation with Fučik type resonance at infinity Ⅲ, Nonlinear Anal. TMA, 2010, 72, 507-526. doi: 10.1016/j.na.2009.06.096 |
[17] | M. Willem, Minimax Theorems, Birkhauser, Boston, 1996. |
[18] | B. Yan, D. O'regan and R. P. Agarwal, On spectral asymptotics and bifurction for some elliptic equations of Kirchhoff-type with odd superlinear term, Journal of Applied Analysis and Computation, 2018, 8, 509-523. doi: 10.11948/2018.509 |
[19] | Z. Zhang and S. Li, On sign-changing and multiple solutions of the $p$-Laplacian, J. Funct. Anal., 2003, 197, 447-468. doi: 10.1016/S0022-1236(02)00103-9 |