2021 Volume 11 Issue 4
Article Contents

Yuhao Cong, Zheng Wang. STATIC OUTPUT FEEDBACK DESIGN USING MODEL REDUCTION METHODS FOR SECOND-ORDER SYSTEMS[J]. Journal of Applied Analysis & Computation, 2021, 11(4): 1852-1867. doi: 10.11948/20200241
Citation: Yuhao Cong, Zheng Wang. STATIC OUTPUT FEEDBACK DESIGN USING MODEL REDUCTION METHODS FOR SECOND-ORDER SYSTEMS[J]. Journal of Applied Analysis & Computation, 2021, 11(4): 1852-1867. doi: 10.11948/20200241

STATIC OUTPUT FEEDBACK DESIGN USING MODEL REDUCTION METHODS FOR SECOND-ORDER SYSTEMS

  • Corresponding author: Email: wzheng2017@shu.edu.cn(Z. Wang)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (Nos. 11971303, 11871330)
  • In this paper, the static output feedback design is investigated using model reduction methods for large-scale second-order systems. First, based on the second-order Krylov subspace method, a low dimensional structure-preserving second-order system is derived. Then, applying matrix transformation, the relationship between input variables and output variables is directly established in the low dimensional system. We design output feedback controller for this system. Finally, using the argument principle, a computable stability criterion is presented to check the stability of the closed-loop system. Furthermore, a numerical algorithm is provided to design the output feedback controller for large-scale second-order systems. Numerical examples are given to illustrate the effectiveness of the algorithms.

  • 加载中
  • [1] T. H. S. Abdelaziz, Robust pole placement for second-order linear systems using velocity-plus-acceleration feedback, IET Control Theory Appl., 2013, 7(14), 1843-1856. doi: 10.1049/iet-cta.2013.0039

    CrossRef Google Scholar

    [2] T. H. S. Abdelaziz and M. Valášek, Eigenstructure assignment by proportional-plus-derivative feedback for second-order linear control systems, Kybernetika, 2005, 41(5), 661-676.

    Google Scholar

    [3] F. D. Adegas and J. Stoustrup, Linear matrix inequalities for analysis and control of linear vector second-order systems, Int. J. Robust Nonlinear Control, 2015, 25(16), 2939-2964. doi: 10.1002/rnc.3242

    CrossRef Google Scholar

    [4] A. C. Antoulas, Approximation of large-scale dynamical systems, SIAM, Philadelphia, 2005.

    Google Scholar

    [5] Z. Bai and Y. Su, SOAR: A second-order Arnoldi method for the solution of the quadratic eigenvalue problem, SIAM J. Matrix Anal. Appl., 2005, 26(3), 640-659. doi: 10.1137/S0895479803438523

    CrossRef Google Scholar

    [6] Z. Bai and Y. Su, Dimension reduction of large-scale second-order dynamical systems via a second-order Arnoldi method, SIAM J. Sci. Comput., 2005, 26(5), 1692-1709. doi: 10.1137/040605552

    CrossRef Google Scholar

    [7] P. Benner, M. Hinze and E. Ter Maten, eds., Model reduction for circuit simulation, Lecture notes in electrical engineering, 74, Springer-Verlag, Dordrecht, 2011.

    Google Scholar

    [8] P. Benner, V. Mehrmann and D. C. Sorensen, eds., Dimension reduction of large-scale systems, Lecture Notes in Computational Science and Engineering, 45, Springer-Verlarg, Berlin, Heidelberg, 2005.

    Google Scholar

    [9] P. Benner, M. Ohlberger, A. Cohen and K. Willcox, Model reduction and approximation: theory and algorithms, SIAM, Philadelphia, 2017.

    Google Scholar

    [10] J. W. Brown and R. V. Churchill, Complex variables and applications, McGraw-Hill, New York, 2014.

    Google Scholar

    [11] Y. Chahlaoui, D. Lemonnier, A. Vandendorpe and P. Van Dooren, Second-order balanced truncation, Linear Algebra Appl., 2006, 415, 373-384. doi: 10.1016/j.laa.2004.03.032

    CrossRef Google Scholar

    [12] R. R. Craig and A. J. Kurdila, Fundamentals of structural dynamics, John Wiley & Sons, Hoboken, 2006.

    Google Scholar

    [13] E. Fosong, P. Schulze and B. Unger, From time-domain data to low-dimensional structured models, arXiv: 1902.05112v1, 2019.

    Google Scholar

    [14] R. Galindo, Stabilisation of matrix polynomials, Int. J. Control, 2015, 88(10), 1925-1932. doi: 10.1080/00207179.2015.1012651

    CrossRef Google Scholar

    [15] W. Gawronski, Advanced structural dynamics and active control of structures, Springer-Verlag, New York, 2004.

    Google Scholar

    [16] C. Gu, Matrix Padé-type approximant and directional matrix Padé approximant in the inner product space, J. Comput. Appl. Math., 2004, 164-165(1), 365-385.

    Google Scholar

    [17] J. Han, E. B. Rudnyi and J. G. Korvink, Efficient optimization of transient dynamic problems in MEMS devices using model order reduction, J. Micromech. Microeng., 2005, 15(4), 822-832. doi: 10.1088/0960-1317/15/4/021

    CrossRef Google Scholar

    [18] C. Hartmann, V. Wheeler and C. Schütte, Balanced truncation of linear second-order systems: a Hamiltonian approach, Multiscale Model. Simul., 2010, 8(4), 1348-1367. doi: 10.1137/080732717

    CrossRef Google Scholar

    [19] G. Hu and X. Hu, Stability criteria of matrix polynomials, Int. J. Control, 2019, 92(12), 2973-2978. doi: 10.1080/00207179.2018.1467045

    CrossRef Google Scholar

    [20] Y. Lin, L. Bao and Y. Wei, Model-order reduction of large-scale second-order MIMO dynamical systems via a block second-order Arnoldi method, Int. J. Comput. Math., 2007, 84(7), 1003-1019. doi: 10.1080/00207160701253836

    CrossRef Google Scholar

    [21] S. E. Lyshevski, MEMS and NEMS: systems, devices, and structures, CRC Press, New York, 2002.

    Google Scholar

    [22] N. K. Nichols and J. Kautsky, Robust eigenstructure assignment in quadratic matrix polynomials: nonsingular case, SIAM J. Matrix Anal. Appl., 2001, 23(1), 77-102. doi: 10.1137/S0895479899362867

    CrossRef Google Scholar

    [23] P. J. Rabier and W. C. Rheinboldt, Nonholonomic motion of rigid mechanical systems from a DAE viewpoint, SIAM, Philadelphia, 2000.

    Google Scholar

    [24] B. Salimbahrami and B. Lohmann, Order reduction of large scale second-order systems using Krylov subspace methods, Linear Algebra Appl., 2006, 415, 385-405. doi: 10.1016/j.laa.2004.12.013

    CrossRef Google Scholar

    [25] S. D. Senturia, N. Aluru and J. White, Simulating the behavior of MEMS devices: computational methods and needs, IEEE Comput. Sci. Engrg., 1997, 4(1), 30-43. doi: 10.1109/99.590854

    CrossRef Google Scholar

    [26] K. K. Stavrakakis, Model order reduction methods for parameterized systems in electromagnetic field simulations, Ph. D. thesis, Technische Universität, 2012.

    Google Scholar

    [27] Z. Tomljanović, C. Beattie and S. Gugercin, Damping optimization of parameter dependent mechanical systems by rational interpolation, Adv. Comput. Math., 2018, 44, 1797-1820. doi: 10.1007/s10444-018-9605-9

    CrossRef Google Scholar

    [28] Z. Xiao, Y. Jiang and Z. Qi, Structure preserving balanced proper orthogonal decomposition for second-order form systems via shifted Legendre polynomials, IET Control Theory Appl., 2019, 13(8), 1155-1165. doi: 10.1049/iet-cta.2018.5946

    CrossRef Google Scholar

    [29] F. Zhang, Matrix theory: basic results and techniques, Springer, New York, 2011.

    Google Scholar

    [30] L. Zhang, G. Zhang and W. Liu, Optimal control of second-order and high-order descriptor systems, Optim. Control Appl. Methods, 2019, 40(4), 791-806. doi: 10.1002/oca.2511

    CrossRef Google Scholar

Figures(6)

Article Metrics

Article views(2440) PDF downloads(412) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint