2021 Volume 11 Issue 4
Article Contents

Jing Ge, Zhigui Lin, Huaiping Zhu. MODELING THE SPREAD OF WEST NILE VIRUS IN A SPATIALLY HETEROGENEOUS AND ADVECTIVE ENVIRONMENT[J]. Journal of Applied Analysis & Computation, 2021, 11(4): 1868-1897. doi: 10.11948/20200258
Citation: Jing Ge, Zhigui Lin, Huaiping Zhu. MODELING THE SPREAD OF WEST NILE VIRUS IN A SPATIALLY HETEROGENEOUS AND ADVECTIVE ENVIRONMENT[J]. Journal of Applied Analysis & Computation, 2021, 11(4): 1868-1897. doi: 10.11948/20200258

MODELING THE SPREAD OF WEST NILE VIRUS IN A SPATIALLY HETEROGENEOUS AND ADVECTIVE ENVIRONMENT

  • Corresponding author: Email: zglin68@hotmail.com(Z. Lin) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (Nos. 11701206, 11911540464 and 11771381), Jiangsu Government Scholarship for Overseas Studies (No. JS-2018-038), NSERC and CIHR of Canada
  • In this paper, we put forward and explore a reaction-diffusion-advection system with free boundaries in spatially heterogeneous environment to model the spatial transmission of West Nile virus. The transmission dynamics are given for the model involving mosquitoes and birds, and the free boundaries are introduced to describe the moving fronts of the infected region. The spatial-temporal risk index $ R_0^F(t) $, which depends on time $ t $, spatial heterogeneity and advection intensity, is derived by variational method. Sufficient conditions for the virus to extinct or to persist are given. Our results show that, if $ R^F_0(\infty)\leq 1 $, the virus extinct eventually, and if $ R^F_0(t_0)\geq 1 $ for some $ t_0\geq 0 $, the virus will spread continuously, while if $ R^F_0(0)<1<R^F_0(\infty) $, the extinction or persistence of the virus depends on the initial scale of infected mosquitoes and birds, or the size of the infected region, the advection intensity and other factors. Finally, numerical simulations indicate that the advection intensity and the expanding capability affect the spreading fronts of the infected region.

  • 加载中
  • [1] A. Abdelrazec, S. Lenhart and H. Zhu, Transmission dynamics of West Nile virus in mosquitoes and corvids and non-corvids, J. Math. Biol., 2014, 68, 1553-1582. doi: 10.1007/s00285-013-0677-3

    CrossRef Google Scholar

    [2] I. Ahn, S. Baek and Z. Lin, The spreading fronts of an infective environment in a man-environment-man epidemic model, Appl. Math. Model., 2016, 40, 7082-7101. doi: 10.1016/j.apm.2016.02.038

    CrossRef Google Scholar

    [3] L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 2008, 21, 1-20. doi: 10.3934/dcds.2008.21.1

    CrossRef Google Scholar

    [4] Anopheles Mosquitoes, Centers for Disease Control and Prevention, http://www.cdc.gov/malaria/about/biology/mosquitoes/. Accessed: May, 2016.

    Google Scholar

    [5] Z. Bai, R. Peng and X. Zhao, A reaction-diffusion malaria model with seasonality and incubation period, J. Math. Biol., 2018, 77, 201-228. doi: 10.1007/s00285-017-1193-7

    CrossRef Google Scholar

    [6] W. Bao, Y. Du, Z. Lin, and H. Zhu, Free boundary models for mosquito range movement driven by climate warming, J. Math. Biol., 2018, 76, 841-875. doi: 10.1007/s00285-017-1159-9

    CrossRef Google Scholar

    [7] C. Bowman, A. B. Gumel, J. Wu, P. van den Driessche and H. Zhu, A mathematical model for assessing control strategies against West Nile virus, Bull. Math. Biol., 2005, 67, 1107-1133. doi: 10.1016/j.bulm.2005.01.002

    CrossRef Google Scholar

    [8] S. Bhowmick, J. Gethmann, F. J. Conraths, I. M. Sokolov, H. H. Lentz and H. K. Hartmut, Locally temperature-driven mathematical model of West Nile virus spread in Germany, J. Theoret. Biol., 2020, 488, 110117, 12 pp. doi: 10.1016/j.jtbi.2019.110117

    CrossRef Google Scholar

    [9] G. L. Campbell, A. A. Marfin, R. S. Lanciotti and D. J. Gubler, West Nile virus, The Lancet infectious diseases, 2002, 2(9), 519-529. doi: 10.1016/S1473-3099(02)00368-7

    CrossRef Google Scholar

    [10] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley and Sons Ltd., Chichester, UK, 2003.

    Google Scholar

    [11] L. F. Chaves, G. L. Hamer, E. D. Walker, W. M. Brown, M. O. Ruiz and U. D. Kitron, Climatic variability and landscape heterogeneity impact urban mosquito diversity and vector abundance and infection, Ecosphere, 2011, 2(6), 1-21.

    Google Scholar

    [12] Centers for Diseases Control and Prevention, West Nile Virus: Preliminary Maps & Data for 2014, http://www.cdc.gov/westnile/statsMaps/preliminaryMapsData/index.html.

    Google Scholar

    [13] R. Cui and Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differential Equations, 2016, 261, 3305-3343. doi: 10.1016/j.jde.2016.05.025

    CrossRef Google Scholar

    [14] Y. Du and Z. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 2010, 42, 377-405. doi: 10.1137/090771089

    CrossRef Google Scholar

    [15] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 2002, 180, 29-48. doi: 10.1016/S0025-5564(02)00108-6

    CrossRef Google Scholar

    [16] J. Ge, K. I. Kim, Z. Lin and H. Zhu, A SIS reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differential Equations, 2015, 259, 5486-5509. doi: 10.1016/j.jde.2015.06.035

    CrossRef Google Scholar

    [17] J. Ge, C. Lei and Z. Lin, Reproduction numbers and the expanding fronts for a diffusionšCadvection SIS model in heterogeneous time-periodic environment, Nonlinear Anal. Real World Appl., 2017, 33, 100-120. doi: 10.1016/j.nonrwa.2016.06.005

    CrossRef Google Scholar

    [18] L. C. Harrington, T. W. Scott, K. Lerdthusnee, R. C. Coleman, A. Costero, G. G. Clarck, J. J. Jones, S. Kitthawee, P. K. Yapong, R. Sithiprasasna and J. D. Edman, Dispersal of the dengue vector Aedes aegypti within and between rural communities, American Journal of Tropical Medicine and Hygiene, 2005, 72, 209-220. doi: 10.4269/ajtmh.2005.72.209

    CrossRef Google Scholar

    [19] H. Huang and M. Wang, The reaction-diffusion system for an SIR epidemic model with a free boundary, Discrete Contin. Dyn. Syst. Ser. B, 2015, 20, 2039-2050.

    Google Scholar

    [20] V. M. Kenkre, R. R. Parmenter, I. D. Peixoto and L. Sadasiv, A theoretical framework for the analysis of the West Nile Virus epidemic, Comput. Math. Appl., 2005, 42, 313-324.

    Google Scholar

    [21] K. Kousuke, H. Matsuzawa and R. Peng, Concentration profile of endemic equilibrium of a reaction-diffusion-advection SIS epidemic model, Calc. Var. Partial Differential Equations, 2017, 56, Art. 112, 28 pp. doi: 10.1007/s00526-017-1207-8

    CrossRef Google Scholar

    [22] M. A. Lewis, J. Renclawowicz and P. van den Driessche, Traveling waves and spread rates for a West Nile virus model, Bull. Math. Biol., 2006, 68(1), 3-23. doi: 10.1007/s11538-005-9018-z

    CrossRef Google Scholar

    [23] C. Lei, J. Xiong and X. Zhou, Qualitative analysis on an SIS epidemic reaction-diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B, 2020, 25, 81-98.

    Google Scholar

    [24] F. Li, J. Liu and X. Zhao, A West Nile virus model with vertical transmission and periodic time delays, J. Nonlinear Sci., 2020, 30, 449-486. doi: 10.1007/s00332-019-09579-8

    CrossRef Google Scholar

    [25] H. Li, R. Peng and F. Wang, Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model, J. Differential Equations, 2017, 262, 885-913. doi: 10.1016/j.jde.2016.09.044

    CrossRef Google Scholar

    [26] H. Li, R. Peng and T. Xiang, Dynamics and asymptotic profiles of endemic equilibrium for two frequency-dependent SIS epidemic models with cross-diffusion, European J. Appl. Math., 2020, 31, 26-56. doi: 10.1017/S0956792518000463

    CrossRef Google Scholar

    [27] G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co. Inc., River Edge, NJ, 1996.

    Google Scholar

    [28] H. Lin and F. Wang, Global dynamics of a nonlocal reaction-diffusion system modeling the West Nile virus transmission, Nonlinear Anal. Real World Appl., 2019, 46, 352-373. doi: 10.1016/j.nonrwa.2018.09.021

    CrossRef Google Scholar

    [29] Z. Lin and H. Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary, J. Math. Biol., 2017, 75(6-7), 1381-1409. doi: 10.1007/s00285-017-1124-7

    CrossRef Google Scholar

    [30] R. Liu, J. Shuai, J. Wu and H. Zhu, Modeling spatial spread of West Nile virus and impact of directional dispersal of birds, Math. Biosci. Eng., 2006, 3, 145-160. doi: 10.3934/mbe.2006.3.145

    CrossRef Google Scholar

    [31] N. A. Maidana and H. Yang, Spatial spreading of West Nile virus described by traveling waves, J. Theoret. Biol., 2009, 258, 403-417. doi: 10.1016/j.jtbi.2008.12.032

    CrossRef Google Scholar

    [32] R. Peng, Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model, I. , J. Differential Equations, 2009, 247, 1096-1119. doi: 10.1016/j.jde.2009.05.002

    CrossRef Google Scholar

    [33] Z. Qiu, X. Wei, C. Shan and H. Zhu, Monotone dynamics and global behaviors of a West Nile virus model with mosquito demographics, J. Math. Biol., 2020, 80, 809-834. doi: 10.1007/s00285-019-01442-4

    CrossRef Google Scholar

    [34] H. L. Smith, Monotone Dynamical Systems, American Math. Soc., Providence, 1995.

    Google Scholar

    [35] M. Wang, A diffusive logistic equation with a free boundary and sign-changing coefficient in time-periodic environment, J. Funct. Anal., 2016, 270, 483-508. doi: 10.1016/j.jfa.2015.10.014

    CrossRef Google Scholar

    [36] W. Wang and X. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 2012, 11, 1652-1673. doi: 10.1137/120872942

    CrossRef Google Scholar

    [37] Y. Wu and X. Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, J. Differential Equations, 2016, 261, 4424-4447. doi: 10.1016/j.jde.2016.06.028

    CrossRef Google Scholar

    [38] G. Wang, R. B. Minnis, J. L. Belant, and C. L. Wax, Dry weather induces outbreaks of human West Nile virus infections, BMC infectious diseases, 2010, 38, 1-7.

    Google Scholar

    [39] M. Wang, A diffusive logistic equation with a free boundary and sign-changing coefficient in time-periodic environment, J. Funct. Anal., 2016, 270, 483-508. doi: 10.1016/j.jfa.2015.10.014

    CrossRef Google Scholar

    [40] J. Zhang, C. Cosner and H. Zhu, Two-patch model for the spread of West Nile virus, Bull. Math. Biol., 2018, 80, 840-863. doi: 10.1007/s11538-018-0404-8

    CrossRef Google Scholar

Figures(4)

Article Metrics

Article views(3382) PDF downloads(582) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint