Citation: | J. Vanterler da C. Sousa. EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR THE FRACTIONAL DIFFERENTIAL EQUATIONS WITH P -LAPLACIAN IN $ \mathbb{H}^{\nu,\eta;\psi}_{p}$[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 622-661. doi: 10.11948/20210258 |
This present paper is dedicated to investigate the existence, uniqueness and minimization properties of weak solutions for a fractional differential equation in the sense of the $\psi$-Hilfer fractional operator, with $p$-Laplacian in the $\psi$-fractional space $\mathbb{H}^{\nu, \eta;\psi}_{p}$. To obtain such results, we use a variational structure for the main operator of the problem and the Harnack inequality.
[1] | B. Abdellaoui, K. heireddine Biroud and E. Laamri, Existence and nonexistence of positive solutions to a fractional parabolic problem with singular weight at the boundary, J. Evol. Equ., 2020, 1-35. |
[2] | R. Almeida, Analysis of a fractional SEIR model with treatment, Appl. Math. Lett., 2018, 84, 56-62. doi: 10.1016/j.aml.2018.04.015 |
[3] | R. Arora, J. Giacomoni and G. Warnault, Regularity results for a class of nonlinear fractional Laplacian and singular problems, Nonlinear Diff. Equ. Appl., 2021, 28(3), 1-35. |
[4] |
A. Benaissa and S. Mokeddem, Decay estimates for the wave equation of $p$‐Laplacian type with dissipation of $m$‐Laplacian type, Math. Meth. Appl. Sci., 2007, 30(2), 237-247. doi: 10.1002/mma.789
CrossRef $p$‐Laplacian type with dissipation of |
[5] | A. D. Castro, T. Kuusi and G. Palatucci. Local behavior of fractional $p$-minimizers, Ann. Inst. H. Poincaré Anal. Non. Linéaire, 2016, 33(5), 1279-1299. doi: 10.1016/j.anihpc.2015.04.003 |
[6] |
G. Chai, Positive solutions for boundary value problem of fractional differential equation with $p$-Laplacian operator, Bound. Val. Probl., 2012, 2012, 1-20. doi: 10.1186/1687-2770-2012-1
CrossRef $p$-Laplacian operator" target="_blank">Google Scholar |
[7] | Z. Chen, Y. Shen and Y. Yao, Some existence results of solutions for $p$-Laplacian, Acta Mathematica Scientia, 2003, 23(4), 487-496. doi: 10.1016/S0252-9602(17)30492-7 |
[8] | D. G. Costa and C. A. Magalhães, Existence results for perturbations of the $p$-Laplacian, Nonlinear Analysis: Theory, Methods & Appl., 1995, 24(3), 409-418. |
[9] | A. Dabiri, B. P. Moghaddam and J. T. Machado, Optimal variable-order fractional PID controllers for dynamical systems, J. Comput. Appl. Math., 2018, 339, 40-48. doi: 10.1016/j.cam.2018.02.029 |
[10] | L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Scuola Norm. Pisa CI. Sci., 1998, 26(4), 689-707. |
[11] | G. Dinca, P. Jebelean and J. Mawhin, Variational and topological methods for Dirichlet problems with $p$-Laplacian, Portugaliae Mathematica, 2001, 58, 340-378. |
[12] | M. Dreher, The wave equation for the $p$-Laplacian, Hokkaido Math. J., 2007, 36(1), 21-52. |
[13] | L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, Volume 19, American Mathematical Society, 1998. |
[14] |
M. Fraas and Y. Pinchover, Positive Liouville theorems and asymptotic behavior for $p$-Laplacian type elliptic equations with a Fuchsian potential, Confluentes Mathematici, 2011, 3(2), 291-323. doi: 10.1142/S1793744211000321
CrossRef $p$-Laplacian type elliptic equations with a Fuchsian potential" target="_blank">Google Scholar |
[15] | H. Gao and T. Ma, Global solutions for a nonlinear wave equation with the $p$-Laplacian operator, Elec. J. Qual. Theory Diff. Equ., 1999, 1999(11), 1-13. |
[16] | J. Giacomoni and S. Santra, Positive solutions to a fractional equation with singular nonlinearity, J. Diff. Equ., 2018, 265(4), 1191-1226. doi: 10.1016/j.jde.2018.03.023 |
[17] |
J. Giacomoni and S. Tiwari, Existence and global behavior of solutions to fractional $p$-Laplacian parabolic problems, Elec. J. Diff. Equ., 2018, 44, 20.
$p$-Laplacian parabolic problems" target="_blank">Google Scholar |
[18] |
Z. Han, H. Lu and C. Zhang, Positive solutions for eigenvalue problems of fractional differential equation with generalized $p$-Laplacian operator, Appl. Math. Comp., 2015, 257, 526-536. doi: 10.1016/j.amc.2015.01.013
CrossRef $p$-Laplacian operator" target="_blank">Google Scholar |
[19] | M. Jia and X. Liu, Multiplicity of solutions for integral boundary value problems of fractional differential equations with upper and lower solutions, Appl. Math. Comp., 2014, 232, 313-323. doi: 10.1016/j.amc.2014.01.073 |
[20] | A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, elsevier, 2006, 204. |
[21] |
G. Li and C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of $p$-Laplacian type without the Ambrosetti–Rabinowitz condition, Nonlinear Analysis: Theory, Methods & Applications, 2010, 72(12), 4602-4613.
$p$-Laplacian type without the Ambrosetti–Rabinowitz condition" target="_blank">Google Scholar |
[22] |
A. Li and C. Wei, On fractional $p$-Laplacian problems with local conditions, Adv. Nonlinear Anal., 2018, 7(4), 485-496. doi: 10.1515/anona-2016-0105
CrossRef $p$-Laplacian problems with local conditions" target="_blank">Google Scholar |
[23] | G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Analysis, Theory, Methods & Applications, 1988, 12, 1203-1219. |
[24] | O. Nikan, Z. Avazzadeh and J. A. Tenreiro Machado, Numerical approximation of the nonlinear time-fractional telegraph equation arising in neutron transport, Commun. Nonlinear Sci. Numer. Simul., 2021, 99, 105755. doi: 10.1016/j.cnsns.2021.105755 |
[25] | M. D. Ortigueira, V. Martynyuk, M. Fedula and J. Tenreiro Machado, The failure of certain fractional calculus operators in two physical models, Frac. Cal. Appl. Anal., 2019, 22(2), 255-270. doi: 10.1515/fca-2019-0017 |
[26] | C. A. Raposo, A. P. Cattai and J. O. Ribeiro, Global solution and asymptotic behaviour for a wave equation type $p$-Laplacian with memory, Open J. Math. Anal., 2018, 2(2), 156-171. |
[27] | X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 2014, 101(9), 275-302. |
[28] | J. Vanterler da C. Sousa, M. N. N. dos Santos, E. da Costa, L. A. Magna and E. Capelas de Oliveira, A new approach to the validation of an ESR fractional model, Comput. Appl. Math., 2021, 40(3), 1-20. |
[29] | J. Vanterler da C. Sousa, E. Capelas de Oliveira and L. A. Magna. Fractional calculus and the ESR test, AIMS Math., 2017, 2(4), 692-705. doi: 10.3934/Math.2017.4.692 |
[30] | J. Vanterler da C. Sousa, C. T. Ledesma, M. Pigossi and J. Zuo, Nehari manifold for weighted singular fractional $\psi$-Laplace equations, 2021, prepint. |
[31] |
J. Vanterler da C. Sousa, M. Aurora, P. Pulido and E. Capelas de Oliveira, Existence and Regularity of Weak Solutions for $\psi$-Hilfer Fractional Boundary Value Problem, Mediterr. J. Math., 2021, 18(4), 1-15.
$\psi$-Hilfer Fractional Boundary Value Problem" target="_blank">Google Scholar |
[32] |
J. Vanterler da C. Sousa, Nehari manifold and bifurcation for a $\psi$-Hilfer fractional $p$‐Laplacian, Math. Meth. Appl. Sci., 2021, 44(11), 9616-9628. doi: 10.1002/mma.7296
CrossRef $\psi$-Hilfer fractional |
[33] |
J. Vanterler da C. Sousa, J. Zuo and D. O'Regan, The Nehari manifold for a $\psi$-Hilfer fractional $p$-Laplacian, Applicable Anal., 2021, 1-31.
$\psi$-Hilfer fractional |
[34] |
J. Vanterler da C. Sousa, L. S. Tavares and C. E. Torres Ledesma, A variational approach for a problem involving a $\psi$-Hilfer fractional operator, J. Appl. Anal. Comput., 2021, 11(3), 1610-1630.
$\psi$-Hilfer fractional operator" target="_blank">Google Scholar |
[35] |
J. Vanterler da C. Sousa and E. Capelas De Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 2018, 60, 72-91. doi: 10.1016/j.cnsns.2018.01.005
CrossRef $\psi$-Hilfer fractional derivative" target="_blank">Google Scholar |
[36] |
J. Vanterler da C. Sousa and E. Capelas De Oliveira. Leibniz type rule: $\psi$-Hilfer fractional operator, Commun. Nonlinear Sci. Numer. Simul., 2019, 77, 305-311. doi: 10.1016/j.cnsns.2019.05.003
CrossRef $\psi$-Hilfer fractional operator" target="_blank">Google Scholar |
[37] | J. Vanterler da C. Sousa, G. S. F. Frederico and E. Capelas de Oliveira, $\psi$-Hilfer pseudo-fractional operator: new results about fractional calculus, Comput. Appl. Math., 2020, 39(4), 1-33. |
[38] | J. Vanterler da C. Sousa, J. A. Tenreiro Machado and E. Capelas de Oliveira, The $\psi$-Hilfer fractional calculus of variable order and its applications, Comput. Appl. Math., 2020, 39(4), 1-35. |
[39] |
X. Su, M. Jia and X. Fu. On positive solutions of eigenvalue problems for a class of $p$-Laplacian fractional differential equations, J. Appl. Anal. Comput., 2018, 8(1), 152-171.
$p$-Laplacian fractional differential equations" target="_blank">Google Scholar |
[40] |
J. Tan and M. Li. Solutions of fractional differential equations with $p$-Laplacian operator in Banach spaces, Bound. Val. Probl., 2018, 2018(1), 1-13. doi: 10.1186/s13661-017-0918-2
CrossRef $p$-Laplacian operator in Banach spaces" target="_blank">Google Scholar |
[41] |
Y. Wang, Multiple positive solutions for mixed fractional differential system with $p$-Laplacian operators, Boundary Value Probl., 2019, 2019(1), 1-17. doi: 10.1186/s13661-018-1115-7
CrossRef $p$-Laplacian operators" target="_blank">Google Scholar |
[42] | N. Yao, X. Liu and M. Jia, Solvability for Riemann-Stieltjes integral boundary value problems of Bagley-Torvik equations at resonance, J. Appl. Anal. Comput., 2020, 10(5), 1937-1953. |
[43] | X. Yang, Bound state solutions of fractional Choquard equation with Hardy–Littlewood–Sobolev critical exponent, Comput. Appl. Math., 2021, 40(5), 1-25. |
[44] |
W. Yang, Eigenvalue problems for a class of nonlinear Hadamard fractional differential equations with $p$-Laplacian operator, Math. Slovaca, 2020, 70(1), 107-124. doi: 10.1515/ms-2017-0336
CrossRef $p$-Laplacian operator" target="_blank">Google Scholar |
[45] | A. Youssfi and G. O. M. Mahmoud, Nonlocal semilinear elliptic problems with singular nonlinearity, Calc. Var. Partial Diff. Equ., 2021, 60(4), 1-34. |