Citation: | Moosa Gabeleh, Jack Markin, Manuel De La Sen. SOME COMMENTS ON BEST PROXIMITY POINTS FOR ORDERED PROXIMAL CONTRACTIONS[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1434-1442. doi: 10.11948/20210266 |
In this article, we focus on the existence of an optimal approximate solution, designated as a best proximity point for non-self mappings which are ordered proximal contractions in the setting of partially ordered metric spaces and prove that these results are particular cases of existing fixed point theorems in the literature.
[1] | G. V. R. Babu, P. D. Sailaja and K. T. Kidane, A fixed point theorem in orbitally complete partially ordered metric spaces, J. Operators, 2013, 2013, 1–8. |
[2] | S. Chandok, B. S. Choudhury and N. Metiya, Fixed point results in ordered metric spaces forrational type expressions with auxiliary functions, J. Egyptian Math. Soc., 2015, 23, 95–101. doi: 10.1016/j.joems.2014.02.002 |
[3] | L. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 1974, 45, 267–273. |
[4] | K. Chairaa, A. Eladraouib and M. Kabilc, Extensions of some fixed point theorems for weak-contraction mappings in partially ordered modular metric spaces, Iranian Journal of Mathematical Sciences and Informatics, 2020, 15, 111–124. doi: 10.29252/ijmsi.15.1.111 |
[5] | H. Ding, Z. Kadelburg and H. K. Nashine, Common fixed point theorems for weakly increasing mappings on ordered orbitally complete metric spaces, Fixed Point Theory Apll., 2012, 2012, 1–14. doi: 10.1186/1687-1812-2012-1 |
[6] | K. S. Eke and G. J. Oghonyon, Some fixed point theorems in ordered partial metric spaces with applications, Cogent Mathematics & Statistics, 2018, 5, 1–11. |
[7] | K. Fallahi, H. Ghahramani and G. Soleimani Rad, Integral type contractions in partially ordered metric spaces and best proximity point, Iranian J. Sci. Tech., Transactions A: Sci., 2020, 44, 177–183. doi: 10.1007/s40995-019-00807-0 |
[8] | M. Gabeleh and J. Markin, A note on the paper "Best proximity point results for p -proximal contractions", Acta Math. Hungar., 2021, 164, 326–329. doi: 10.1007/s10474-021-01139-5 |
[9] | M. Gabeleh and J. Markin, Some notes on the paper "On best proximity points of interpolative proximal contractions", Quaestiones Mathematicae, 2021. DOI: 10.2989/16073606.2021.1951872. |
[10] | V. Gupta and R. Deep, Some coupled fixed point theorems in partially ordered S-metric spaces, Miskolc Mathematical Notes, 2015, 16, 181–194. doi: 10.18514/MMN.2015.1135 |
[11] | V. Gupta, G. Jungck and N. Mani, Some novel fixed point theorems in partially ordered metric spaces, AIMS Math., 2020, 5, 4444–4452. doi: 10.3934/math.2020284 |
[12] | R. Kannan, Some results on fixed points-Ⅱ, Am. Math. Mon., 1969, 76, 405–408. |
[13] | N. Mani and J. Jindal, Some new fixed point theorems for generalized weak contraction in partially ordered metric spaces, Computational and Mathematical Methods, 2020, 2(5), 1–9. |
[14] | J. J. Nieto and R. Rodriguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 2005, 22, 223–239. doi: 10.1007/s11083-005-9018-5 |
[15] | M. A. Olona, T. A. Alakoya, O. E. Owolabi and O. T. Mewomo, Inertial shrinking projection algorithm with self-adaptive step size for split generalized equilibrium and fixed point problems for a countable family of nonexpansive multivalued mappings, Demonstratio Mathematica, 2021, 54, 47–67. doi: 10.1515/dema-2021-0006 |
[16] | V. Sankar Raj, A best proximity point theorem for weakly contractive non-self-mappings, Nonlinear Anal., 2011, 74, 4804–4808. doi: 10.1016/j.na.2011.04.052 |
[17] | S. Sadiq Basha, Discrete optimization in partially ordered sets, J. Global Optim., 2012, 54, 511–517. doi: 10.1007/s10898-011-9774-2 |
[18] | N. Seshagiri Rao, K. Kalyani and K. Khatri, Contractive mapping theorems in Partially ordered metric spaces, CUBO, 2020, 22, 203–214. doi: 10.4067/S0719-06462020000200203 |
[19] | H. Zegeye and G. Bekele Wega, Approximation of a common f-fixed point of f-pseudocontractive mappings in Banach spaces, Rendiconti del Circolo Matematico di Palermo Series 2 volume, 2021, 70, 1139–1162. doi: 10.1007/s12215-020-00549-8 |