2022 Volume 12 Issue 4
Article Contents

Bin Ge, Wen-Shuo Yuan. EXISTENCE OF AT LEAST TWO SOLUTIONS FOR DOUBLE PHASE PROBLEM[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1443-1450. doi: 10.11948/20210273
Citation: Bin Ge, Wen-Shuo Yuan. EXISTENCE OF AT LEAST TWO SOLUTIONS FOR DOUBLE PHASE PROBLEM[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1443-1450. doi: 10.11948/20210273

EXISTENCE OF AT LEAST TWO SOLUTIONS FOR DOUBLE PHASE PROBLEM

  • This paper concerns with a class of double phase Dirichlet problem depending of one real parameter. Under some appropriate assumptions, we obtain the existence of at least two solutions for this problem using a direct consequence of the celebrated Pucci and Serrin theorem. Our results generalize some existing results.

    MSC: 35D30, 35J20, 35J60, 35J70, 35J92
  • 加载中
  • [1] P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase, Calc. Var. & PDE., 2018, 57(2), 62.

    Google Scholar

    [2] V. Benci, P. D'Avenia, D. Fortunato and L. Pisani, Solitons in several space dimensions: Derrick's problem and infinitely many solutions, Arch. Ration. Mech. Anal., 2000, 154(4), 297–324. doi: 10.1007/s002050000101

    CrossRef Google Scholar

    [3] S. Biagi, F. Esposito and E. Vecchi, Symmetry and monotonicity of singular solutions of double phase problems, J. Diff. Eqs., 2021, 280, 435–463. doi: 10.1016/j.jde.2021.01.029

    CrossRef Google Scholar

    [4] A. Bahrouni, V. D. Radulescu and D. D. Repovs, Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves, Nonlinearity, 2019, 32(7), 2481–2495. doi: 10.1088/1361-6544/ab0b03

    CrossRef Google Scholar

    [5] F. Colasuonno and M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pura Appl., 2016, 195(6), 1917–1959. doi: 10.1007/s10231-015-0542-7

    CrossRef Google Scholar

    [6] N. Cui and H. Sun, Existence and multiplicity results for double phase problem with nonlinear boundary condition, Nonlinear Anal. Real World Appl., 2021, 60, 103307. doi: 10.1016/j.nonrwa.2021.103307

    CrossRef Google Scholar

    [7] C. De Filippis and G. Mingione, Manifold constrained non-uniformly elliptic problems, J. Geom. Anal., 2020, 30, 1661–1723. doi: 10.1007/s12220-019-00275-3

    CrossRef Google Scholar

    [8] X. Fan, An imbedding theorem for Musielak-Sobolev spaces, Nonlinear Anal., 2012, 75(4), 1959–1971. doi: 10.1016/j.na.2011.09.045

    CrossRef Google Scholar

    [9] B. Ge, D. Lv and J. Lu, Multiple solutions for a class of double phase problem without the Ambrosetti-Rabinowitz conditions, Nonlinear Anal., 2019, 188, 294–315. doi: 10.1016/j.na.2019.06.007

    CrossRef Google Scholar

    [10] L. Gasinski and P. Winkert, Existence and uniqueness results for double phase problems with convection term, J. Diff. Equs., 2020, 268(5), 4183–4193.

    Google Scholar

    [11] L. Gasinski and P. Winkert, Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold, J. Diff. Equs., 2021, 274(15), 1037–1066.

    Google Scholar

    [12] W. Liu and G. Dai, Existence and multiplicity results for double phase problem, J. Diff. Equs., 2018, 265(9), 4311–4334. doi: 10.1016/j.jde.2018.06.006

    CrossRef Google Scholar

    [13] W. Liu and G. Dai, Three ground state solutions for double phase problem, J. Math. Phys., 2018, 59(12), 121503. doi: 10.1063/1.5055300

    CrossRef Google Scholar

    [14] W. Liu and G. Dai, Multiplicity results for double phase problems in $\mathbb{R}^N$, J. Math. Phys., 2020, 61(9), 091508. doi: 10.1063/5.0020702

    CrossRef $\mathbb{R}^N$" target="_blank">Google Scholar

    [15] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., Springer, Berlin, 1983, 1034.

    Google Scholar

    [16] G. Mingione and V. D. Radulescu, Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl., 2021, 501(1), 125197. doi: 10.1016/j.jmaa.2021.125197

    CrossRef Google Scholar

    [17] J. Ok, Regularity for double phase problems under additional integrability assumptions, Nonlinear Anal., 2020, 194, 111408. doi: 10.1016/j.na.2018.12.019

    CrossRef Google Scholar

    [18] N. S. Papageorgiou, V. D. Radulescu and D. D. Repovs, Double-phase problems with reaction of arbitrary growth, Z. Angew. Math. Phys., 2018, 69(4), 108. doi: 10.1007/s00033-018-1001-2

    CrossRef Google Scholar

    [19] N. S. Papageorgiou, V. D. Radulescu and D. D. Repovs, Double-phase problems and a discontinuity property of the spectrum, Proc. Amer. Math. Soc., 2019, 147, 2899–2910. doi: 10.1090/proc/14466

    CrossRef Google Scholar

    [20] K. Perera and M. Squassina, Existence results for double-phase problems via Morse theory, Commun. Contemp. Math., 2018, 20(2), 1750023. doi: 10.1142/S0219199717500237

    CrossRef Google Scholar

    [21] B. Ricceri, On a classical existence theorem for nonlinear elliptic equations, in: M. Théra (Ed. ), Experimental, Constructive and Nonlinear Analysis, in: CMS Conf. Proc., Canad. Math. Soc., 2000, 27, 275–278.

    Google Scholar

    [22] M. A. Ragusa and A. Tachikawa, Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal., 2020, 9(1), 710–728.

    Google Scholar

    [23] B. Wang, G. Hou and B. Ge, Existence of solutions for double-phase problems by topological degree, J. Fixed Point Theory Appl., 2021, 23(1), 1–11. doi: 10.1007/s11784-020-00835-z

    CrossRef Google Scholar

    [24] J. Yang, H. Chen and S. Liu, Existence of solutions for the double phase variational problems without AR-condition, Manuscripta Math., 2021, 165, 505–519. doi: 10.1007/s00229-020-01228-9

    CrossRef Google Scholar

    [25] V. V. Zhikov, On Lavrentiev's Phenomenon, Russian J. Math. Phys., 1995, 3(2), 249–269.

    Google Scholar

    [26] S. Zeng, Y. Bai, L. Gasinski and P. Winkert, Existence results for double phase implicit obstacle problems involving multivalued operators, Calc. Var. Partial Differential Equations, 2020, 59(5), 1–18.

    Google Scholar

    [27] S. Zeng, Y. Bai, L. Gasinski and P. Winkert, Convergence analysis for double phase obstacle problems with multivalued convection term, Adv. Nonlinear Anal., 2021, 10(1), 659–672.

    Google Scholar

    [28] S. Zeng, L. Gasinski, P. Winkert and Y. Bai, Existence of solutions for double phase obstacle problems with multivalued convection term, J. Math. Anal. Appl., 2021, 501(1), 123997. doi: 10.1016/j.jmaa.2020.123997

    CrossRef Google Scholar

Article Metrics

Article views(2440) PDF downloads(491) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint