Citation: | Chaoxiong Du, Wentao Huang. HOPF BIFURCATION PROBLEM FOR A CLASS OF KOLMOGOROV MODEL WITH A POSITIVE NILPOTENT CRITICAL POINT[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1451-1465. doi: 10.11948/20210276 |
In this paper, We discuss the Hopf bifurcation problem of a three-order positive nilpotent critical point (1, 1) of a class of Kolmogorov model. By using the method offered by [
[1] | D. Addona, L. Angiuli and L. Lorenzi, Invariant measures for systems of Kolmogorov equations, J. Appl. Anal. Comput., 2018, 8(3), 764–804. |
[2] | C. Du and W. Huang, Center-focus problem and limit cycles bifurcations for a class of cubic Kolmogorov model, Nonlinear Dyn., 2013, 72(1), 197–206. |
[3] | C. Du, Y. Liu and W. Huang, Limit cycles bifurcations for a class of Kolmogorov model in symmetrical vector field, Int. J. Bifurcation and Chaos., 2014, 24(4), 1450040. |
[4] | C. Du, Y. Liu and W. Huang, Limit cycles bifurcations behavior for a class of quartic Kolmogorov model in symmetrical vector field, Appl. Math. Model., 2016, 40(5–6), 4094–4108. doi: 10.1016/j.apm.2015.11.029 |
[5] | C. Du, Q. Wang and W. Huang, Three-Dimensional hopf bifurcation for a class of cubic Kolmogorov system, Int. J. Bifurcation and Chaos., 2014, 24(3), 1450036. doi: 10.1142/S0218127414500369 |
[6] | M. Han and V. G. Romanovski, On the number of limit cycles of polynomial Lienard systems, Nonlinear Anal. Real., 2013, 14, 1655–1668. doi: 10.1016/j.nonrwa.2012.11.002 |
[7] | D. He, W. Huang and Q. Wang, Small Amplitude Limit Cycles and Local Bifurcation of Critical Periods for a Quartic Kolmogorov System, Qual. Theor. Dyn. Syst., 2020, 68(19). |
[8] | X. Huang and L. Zhu, Limit cycles in a general kolmogorov model, Nonlinear Anal. Real., 2005, 60, 1394–1414. |
[9] | J. Llibre, Y. Paulina Martsnez and C. Valls, Limit cycles bifurcating of Kolmogorov systems in R2 and in R3, Commun. Nonlinear Sci., 2020, 91, 105401. doi: 10.1016/j.cnsns.2020.105401 |
[10] | N. G. Lloyd etc. A cubic Kolmogorov system with six limit cycles, Comput. Math. Appl., 2002, 44(3–4), 445–455. doi: 10.1016/S0898-1221(02)00161-X |
[11] | Y. Liu and J. Li, On the study of three-order nilpotent critical points: integral factor method, Int. J. Bifurcation and Chaos., 2011, 21(5), 497–504. |
[12] | Y. Liu and J. Li, Bifurcations of limit cycles created by a multiple nilpotent critical point of planar dynamical systems, Int. J. Bifurcation and Chaos., 2011, 21(2), 1293–1309. |
[13] | E. Saez and I. Szanto, Limit cycles of a cubic kolmogorov system, Appl. Math. Lett., 1996, 9(1), 15–18. doi: 10.1016/0893-9659(95)00095-X |
[14] | J. Wang and W. Jiang, Bifurcation and chaos of a delayed predator-prey model with dormancy of predators, Nonlinear Dynam., 2012, 69, 1541–1558. doi: 10.1007/s11071-012-0368-4 |
[15] | Y. Wu, M. Zhang and J. Mao, Bifurcations of limit cycles at a nilpotent critical point in a septic Lyapunov system, J. Appl. Anal. Comput., 2020, 10(6), 2575–2591. |
[16] | Y. Yuan etc., The limit cycles of a general Kolmogorov system, J. Math. Anal. Appl., 2012, 392(2), 225–237. doi: 10.1016/j.jmaa.2012.02.065 |