2022 Volume 12 Issue 4
Article Contents

Yaxiang Li, Jiangxing Wang. HIGH ORDER PARAMETER-UNIFORM CONVERGENT HDG METHOD FOR SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEM[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1466-1474. doi: 10.11948/20210283
Citation: Yaxiang Li, Jiangxing Wang. HIGH ORDER PARAMETER-UNIFORM CONVERGENT HDG METHOD FOR SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEM[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1466-1474. doi: 10.11948/20210283

HIGH ORDER PARAMETER-UNIFORM CONVERGENT HDG METHOD FOR SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEM

  • Author Bio: Email: yaxiangli@163.com(Y. Li)
  • Corresponding author: Jiangxing Wang, E-mail: jxwang@hunnu.edu.cn
  • In this paper, a high order hybridizable discontinuous Galerkin method (HDG) on two layer-adapted meshes have been developed for the singularly perturbed convection-diffusion problems in one and two-dimensional. The existence and uniqueness of the HDG solutions are verified. Thanks to the implementation of two-type different anisotropic meshes, i.e., the Shishkin and an improved grade meshes, the uniform 2k + 1 -order super-convergence is obtained for both one-dimensional and two-dimensional cases.

    MSC: 65N15, 76D07, 65N30
  • 加载中
  • [1] R. Bustinza, A. Lombardi and M. Solano, An anisotropic a priori error analysis for a convection-dominated diffusion problem using the HDG method, Comput. Methods Appl. Mech. Engin., 2019, 345, 382–491. doi: 10.1016/j.cma.2018.11.010

    CrossRef Google Scholar

    [2] B. Cockburn, J. Gopalakrishna and R. Lazarov, Unified hybridization of discontinuous {G}alerkin, mixed, and continuous galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 2009, 47(2), 1319–1365. doi: 10.1137/070706616

    CrossRef Google Scholar

    [3] B. Cockburn, J. Gopalakrishnan and F. Sayas, A projection-based error analysis of hdg methods, Math. Comput., 2010, 79, 1351–1367. doi: 10.1090/S0025-5718-10-02334-3

    CrossRef Google Scholar

    [4] B. Cockburn and J. Shen, A hybridizable discontinuous galerkin method for the p-laplacian, SIAM J. Sci. Comput., 2016, 38(1), A545–A566. doi: 10.1137/15M1008014

    CrossRef Google Scholar

    [5] S. Du and F. Sayas, A unified error analysis of hybridizable discontinuous Galerkin methods for the static maxwell equations, SIAM J. Numer. Anal., 2020, 58(2), 1367–1391. doi: 10.1137/19M1290966

    CrossRef Google Scholar

    [6] P. Fernandez, A. Christophe, S. Terrana et al., Hybridized discontinuous galerkin methods for wave propagation, J. Sci. Comput., 2018, 77(3), 1566–1604. doi: 10.1007/s10915-018-0811-x

    CrossRef Google Scholar

    [7] G. Fu, W. Qiu and W. Zhang, An analysis of HDG methods for convection-dominated diffusion problems, ESAIM: Math. Model. Numer. Anal., 2015, 49(1), 225–256. doi: 10.1051/m2an/2014032

    CrossRef Google Scholar

    [8] M. Giacomini, R. Sevilla and A. Huerta, Tutorial on hybridizable discontinuous galerkin (HDG) formulation for incompressible flow problems, in Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids, Springer, 2020, 163–201.

    Google Scholar

    [9] V. Kučera, On diffusion-uniform error estimates for the DG method applied to singularly perturbed problems, IMA J. Numer. Anal, 2014, 34(2), 820–861. doi: 10.1093/imanum/drt007

    CrossRef Google Scholar

    [10] R. Lin, X. Ye, S. Zhang and P. Zhu, A weak Galerkin finite element method for singularly perturbed convection-diffusion–reaction problems, SIAM J. Numer. Anal., 2018, 56(3), 1482–1497. doi: 10.1137/17M1152528

    CrossRef Google Scholar

    [11] Z. Liu and J. Zhang, Analysis of the SDFEM in a streamline diffusion norm for singularly perturbed convection diffusion problems, Appl. Math. Let., 2017, 69, 61–66. doi: 10.1016/j.aml.2017.02.005

    CrossRef Google Scholar

    [12] W. Qiu and K. Shi, An HDG method for convection diffusion equation, J. Sci. Comput., 2016, 66(1), 346–357. doi: 10.1007/s10915-015-0024-5

    CrossRef Google Scholar

    [13] H. Roos, M. Stynes and L. Tobiska, Robust numerical methods for singularly perturbed differential equations: convection-diffusion-reaction and flow problems, 24, Springer Science & Business Media, 2008.

    Google Scholar

    [14] H. Roos and H. Zarin, The discontinuous Galerkin method for singularly perturbed problems, in Numerical Mathematics and Advanced Applications, Springer, 2004, 736–745.

    Google Scholar

    [15] A. L. Spina, M. Kronbichler, M. Giacomini et al., A weakly compressible hybridizable discontinuous Galerkin formulation for fluid–structure interaction problems, Comput. Methods Appl. Mech. and Engin., 2020, 372, 113392. doi: 10.1016/j.cma.2020.113392

    CrossRef Google Scholar

    [16] H. Tian, Z. Zhang and Z. Zhu, Convergence analysis of the LDG method for singularly perturbed two-point boundary value problems, Commun. Math. Sci., 2011, 9(4), 1013–1032. doi: 10.4310/CMS.2011.v9.n4.a4

    CrossRef Google Scholar

    [17] Z. Xie and Z. Zhang, Superconvergence of dg method for one-dimensional singularly perturbed problems, J. Computat. Math., 2007, 185–200.

    Google Scholar

    [18] Z. Xie and Z. Zhang, Uniform superconvergence analysis of the discontinuous galerkin method for a singularly perturbed problem in 1-D, Math. Comput., 2010, 79(269), 35–45. doi: 10.1090/S0025-5718-09-02297-2

    CrossRef Google Scholar

    [19] Z. Xie, Z. Zhang and Z. Zhang, A numerical study of uniform superconvergence of ldg method for solving singularly perturbed problems, J. Comput. Math., 2009, 280–298.

    Google Scholar

    [20] H. Zhu and Z. Zhang, Convergence analysis of the LDG method applied to singularly perturbed problems, Numerical Methods for Partial Differential Equations, 2013, 29(2), 396–421. doi: 10.1002/num.21711

    CrossRef Google Scholar

    [21] H. Zhu and Z. Zhang, Uniform convergence of the LDG method for a singularly perturbed problem with the exponential boundary layer, Math. Comput., 2014, 83(286), 635–663.

    Google Scholar

Figures(2)  /  Tables(5)

Article Metrics

Article views(2415) PDF downloads(487) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint