Citation: | Wan-Xia Shi, Xiang-Tuan Xiong. FILTER REGULARIZATION FOR AN INVERSE SOURCE PROBLEM OF THE TIME-FRACTIONAL DIFFUSION EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 1702-1719. doi: 10.11948/20210295 |
In this paper, we focus on a problem of identifying the unknown source of time-fractional diffusion equation. It is known that such problem is ill-posed in the sense that reconstructed solution does not depend continuously on the observation data. Based on this fact, a GFR (general filter regularized method) is proposed. We further give the error convergence estimates under deterministic case and random noise, respectively. Lastly, some special cases and numerical examples are presented to illustrate the efficiency of our method.
[1] | B. Berkowitz, H. Scher and S. E. Silliman, Anomalous transport in laboratory-scale heterogeneous porous media, Water Resour. Res., 2000, 36(1), 149–158. doi: 10.1029/1999WR900295 |
[2] | L. Cavalier, Inverse problems in statistics, Heidelberg, April, 2007. |
[3] | J. Cheng, J. Nakagawa, M. Yamamoto and T. Yamazaki, Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation, Inverse Probl., 2009, 25(11), 115002. doi: 10.1088/0266-5611/25/11/115002 |
[4] | G. Chi, G. Li and X. Jia, Numerical inversions of a source term in the FADE with a Dirichlet boundary condition using final observations, Comput. Math. Appl., 2011, 62(4), 1619–1626. |
[5] | B. Jin and W. Rundell, An inverse problem for a one-dimensional time-fractional diffusion problem, Inverse Prob., 2012, 28, 075010. doi: 10.1088/0266-5611/28/7/075010 |
[6] | J. Liu and M. Yamamoto, A backward problem for the time-fractional diffusion equation, Appl. Anal., 2010, 89(11), 1769–1788. doi: 10.1080/00036810903479731 |
[7] | R. Metzler and J. Klafter, Subdiffusive transport close to thermal equilibrium: from the Langevin equation to fractional diffusion, Phys. Rev. E., 2000, 61, 6308–6311. doi: 10.1103/PhysRevE.61.6308 |
[8] | D. Murio, Stable numerical solution of a fractional-diffusion inverse heat conduction problem, Comput. Math. Appl., 2007, 53, 1492–1501. |
[9] | D. Murio and C. E. Mejia, Source terms identification for time fractional diffusion equation, Rev. Colomb. Mat., 2008, 42(1), 25–46. |
[10] | D. Murio, Stable numerical solution of a fractional-diffusion inverse heat conduction problem, Comput. Math. Appl., 2007, 53, 1492–1501. |
[11] | H. Qin and T. Wei, Some filter regularization methods for a backward heat conduction problem, Appl. Math. Comput., 2011, 217(24), 10317–10327. |
[12] | C. Ren, X. Xu and S. Lu, Regularization by projection for a backward problem of the time fractional diffusion equation, J. Inverse Ill-Posed Probl., 2014, 22, 121–139. doi: 10.1515/jip-2011-0021 |
[13] | K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 2011, 382(1), 426–447. doi: 10.1016/j.jmaa.2011.04.058 |
[14] | I. Sokolov and J. Klafter, From diffusion to anomalous diffusion: a century after Einsteins Brownian motion, Chaos., 2005, 15(2), 1–7. |
[15] | S. Tatar, R. Tinaztepe and S. Ulusoy, Determination of an unknown source term in a space-time fractional diffusion equation, J. Frac. Calc. Appl., 2015, 6(2), 94–101. |
[16] | N. Tuan, M. Kirane, B. Bin-Mohsin and P. Tam, Filter regularization for final value fractional diffusion problem with deterministic and random noise, Comput. Math. Appl., 2017, 74, 1340–1361. |
[17] | N. Tuan, L. Long, N. Thinh and T. Tran, On a final value problem for the time-fractional diffusion equation with inhomogeneous source, Inverse Probl. Sci. Eng., 2017, 25(9), 1367–1395. doi: 10.1080/17415977.2016.1259316 |
[18] | J. Wang, Y. Zhou and T. Wei, Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation, Appl. Numer. Math., 2013, 68, 39–57. doi: 10.1016/j.apnum.2013.01.001 |
[19] | J. Wang and T. Wei, Quasi-reversibility method to identify a space-dependent source for the time-fractional diffusion equation, Appl. Math. Model., 2015, 39, 6139–6149. doi: 10.1016/j.apm.2015.01.019 |
[20] | X. Xiong and X. Xue, A fractional Tikhonov regularization method for identifying a space-dependent source in the time-fractional diffusion equation, Appl. Math. Comput., 2019, 349, 292–303. doi: 10.1016/j.cam.2018.06.011 |
[21] | F. Yang and C. Fu, The quasi-reversibility regularization method for identifying the unknown source for time fractional diffusion equation, Appl. Math. Model., 2015, 39, 1500–1512. doi: 10.1016/j.apm.2014.08.010 |
[22] | F. Yang, C. Fu and X. Li, The inverse source problem for time fractional diffusion equation: stability analysis and regularization, Inverse Probl. Sci. Eng., 2015, 23(6), 969–996. doi: 10.1080/17415977.2014.968148 |
[23] | F. Yang, X. Liu, X. Li and C. Ma, Landweber iterative regularization method for identifying the unknown source of the time-fractional diffusion equation, Adv. Differ. Equ., 2017, 388. |
[24] | S. Yeganeh, R. Mokhtari and J. Hesthaven, Space-dependent source determination in a time-fractional diffusion equation using a local discontinuous Galerkin method, BIT Numer. Math., 2017, 57, 685–707. doi: 10.1007/s10543-017-0648-y |
[25] | Y. Zhang and X. Xu, Inverse source problem for a fractional diffusion equation, Inverse Probl., 2011, 27, 035010. doi: 10.1088/0266-5611/27/3/035010 |