2022 Volume 12 Issue 6
Article Contents

Jian-Guo Liu, Abdul-Majid Wazwaz, Run-Fa Zhang, Zhong-Zhou Lan, Wen-Hui Zhu. BREATHER-WAVE, MULTI-WAVE AND INTERACTION SOLUTIONS FOR THE (3+1)-DIMENSIONAL GENERALIZED BREAKING SOLITON EQUATION[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2426-2440. doi: 10.11948/20210507
Citation: Jian-Guo Liu, Abdul-Majid Wazwaz, Run-Fa Zhang, Zhong-Zhou Lan, Wen-Hui Zhu. BREATHER-WAVE, MULTI-WAVE AND INTERACTION SOLUTIONS FOR THE (3+1)-DIMENSIONAL GENERALIZED BREAKING SOLITON EQUATION[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2426-2440. doi: 10.11948/20210507

BREATHER-WAVE, MULTI-WAVE AND INTERACTION SOLUTIONS FOR THE (3+1)-DIMENSIONAL GENERALIZED BREAKING SOLITON EQUATION

  • In this paper, a (3+1)-dimensional generalized breaking soliton equation in nonlinear media is investigated. The interaction solution between lump wave and N-soliton (N=2, 3, 4) are derived. The interaction solution between lump wave and periodic waves is also studied. Breather-wave and multi-wave solutions are obtained. The dynamical behavior is demonstrated by some 3D graphics and density plots. Via means of mathematical induction, we also obtain the exact solution containing three arbitrary functions.

    MSC: 35C08, 35G20, 35Q68
  • 加载中
  • [1] K. Aasma, R. Akmal, S. N. Kottakkaran, et al., Splines solutions of boundary value problems that arises in sculpturing electrical process of motors with two rotating mechanism circuit, Phys. Scripta, 2021, 96(10), 104001.

    Google Scholar

    [2] Z. Asim, R. Muhammad, Q. Z. Muhammad, et al., Dynamics of Different Nonlinearities to the Perturbed Nonlinear Schrödinger Equation via Solitary Wave Solutions with Numerical Simulation, Fractal Fract., 2021, 5(4), 213.

    Google Scholar

    [3] I. Bilge, M. S. Osman, A. Turgut, et al., Analytical and numerical solutions of mathematical biology models: The Newell-Whitehead-Segel and Allen-Cahn equations, Math. Method. Appl. Sci., 2020, 43(5), 2588–2600. doi: 10.1002/mma.6067

    CrossRef Google Scholar

    [4] W. Cheng, B. Li and Y. Chen, Construction of Soliton-Cnoidal Wave Interaction Solution for the (2+1)-Dimensional Breaking Soliton Equation, Commun. Theor. Phys., 2015, 63(5), 549–553. doi: 10.1088/0253-6102/63/5/549

    CrossRef Google Scholar

    [5] M. T. Darvishi and M. Najafi, Some exact solutions of the (2+1)-dimensional breaking soliton equation using the three-wave method, Int. J. Comput. Math. Sci., 2012, 6, 13–16.

    Google Scholar

    [6] Y. Fan and A. Chen, Lump and interactional solutions of the (2+1)-dimensional generalized breaking soliton equation, Mod. Phys. Lett. B, 2020, 34(3), 2050037.

    Google Scholar

    [7] J. Fei and W. Gao, Lie symmetries and invariant solutions of (2+1)-dimensional breaking soliton equation, Wave. Random Complex, 2020, 30(1), 54–64.

    Google Scholar

    [8] L. Gai, W. Ma and M. Li, Lump-type solutions, rogue wave type solutions and periodic lump-stripe interaction phenomena to a (3+1)-dimensional generalized breaking soliton equation, Phys. Lett. A, 2020, 384(8), 126178. doi: 10.1016/j.physleta.2019.126178

    CrossRef Google Scholar

    [9] L. Gao, Y. Zi, Y. Yin, et al., Bäcklund transformation, multiple wave solutions and lump solutions to a (3 + 1)-dimensional nonlinear evolution equation, Nonlinear Dyn., 2017, 89, 2233–2240.

    Google Scholar

    [10] H. Hao, D. Zhang, J. Zhang, et al., Rational and Periodic Solutions for a (2+1)-Dimensional Breaking Soliton Equation Associated with ZS-AKNS Hierarchy, Commun. Theor. Phys., 2010, 53(3), 430–434.

    Google Scholar

    [11] K. Hosseini, A. R. Seadawy, M. Mirzazadeh, et al., Multiwave, multicomplexiton, and positive multicomplexiton solutions to a (3+1)-dimensional generalized breaking soliton equation, Alex. Eng. J., 2020, 59, 3473–3479.

    Google Scholar

    [12] S. Imran, M. M. J. Mohammed, Z. Asim, et al., Exact traveling wave solutions for two prolific conformable M-Fractional differential equations via three diverse approaches, Results Phys., 2021, 28, 104557.

    Google Scholar

    [13] Y. Jiang, D. Xian and X. Kang, Homoclinic breather and rogue wave solutions to Maccari equation, Comput. Math. Appl., 2020, 79(7), 1890–1894.

    Google Scholar

    [14] B. Kaur and R. K. Gupta, Time fractional (2+1)-dimensional Wu-Zhang system: Dispersion analysis, similarity reductions, conservation laws, and exact solutions, Comput. Math. Appl., 2020, 79(4), 1031–1048.

    Google Scholar

    [15] K. A. Karmina, Y. Resat and M. S. Osman, Dynamic behavior of the (3+1)-dimensional KdV-Calogero-Bogoyavlenskii-Schiff equation, Opt. Quant. Electron., 2022, 54(3), 160.

    Google Scholar

    [16] H. Li, X. Wan, Z. Fu, et al., New special structures to the (2+1)-dimensional breaking soliton equations, Phys. Scr., 2011, 84, 035005.

    Google Scholar

    [17] J. Liu, W. Zhu, M. S. Osman, et al., An explicit plethora of different classes of interactive lump solutions for an extension form of 3D-Jimbo-Miwa model, Eur. Phys. J. Plus, 2020, 135(5), 412.

    Google Scholar

    [18] Z. Lan and J. Su, Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized AB system, Nonlinear Dyn., 2019, 96, 2535–2546.

    Google Scholar

    [19] W. Ma, Y. Zhang and Y. Tang, Symbolic Computation of Lump Solutions to a Combined Equation Involving Three Types of Nonlinear Terms, East Asian J. Appl. Math., 2020, 10(4), 732–745.

    Google Scholar

    [20] W. Ma, Type (−λ, −λ*) reduced nonlocal integrable mKdV equations and their soliton solutions, Appl. Math. Lett., 2022, 131, 108074.

    Google Scholar

    [21] W. Ma, Riemann-Hilbert Problems and Soliton Solutions of Type (−λ, −λ*) Reduced Nonlocal Integrable mKdV Hierarchies, Mathematics, 2022, 10(6), 870.

    Google Scholar

    [22] W. Ma, Nonlocal integrable mKdV equations by two nonlocal reductions and their soliton solutions, J. Geom. Phys., 2022, 177, 104522.

    Google Scholar

    [23] W. Ma, N-soliton solution and the Hirota conditions in (2+1)-dimensions, Opt. Quant. Electron., 2020, 52, 511.

    Google Scholar

    [24] W. Ma, N-soliton solutions and the Hirota conditions in (1+1)-dimensions, Int. J. Nonlinear Sci. Numer. Simul., 2022, 23(1), 123–133.

    Google Scholar

    [25] W. Ma, X. Yong and X. Lü, Soliton solutions to the B-type Kadomtsev-Petviashvili equation under general dispersion relations, Wave Motion, 2021, 103, 102719.

    Google Scholar

    [26] W. Ma, N-soliton solution of a combined pKP-BKP equation, J. Geom. Phys., 2021, 165, 104191.

    Google Scholar

    [27] W. Ma, N-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation, Math. Comput. Simul., 2021, 190, 270–279.

    Google Scholar

    [28] H. Naher and F. A. Abdullah, The improved (G'/G)-expansion method to the (2+1)-dimensional breaking soliton equation, J. Comput. Anal. Appl., 2014, 16(2), 220–235.

    Google Scholar

    [29] M. S. Osman, On multi-soliton solutions for the (2+1)-dimensional breaking soliton equation with variable coefficients in a graded-index waveguide, Comput. Math. Appl., 2018, 75(1), 1–6.

    Google Scholar

    [30] A. A. Omar, A. S. Mohammed, A. Hassan, et al., A novel analytical algorithm for generalized fifth-order time-fractional nonlinear evolution equations with conformable time derivative arising in shallow water waves, Alex. Eng. J., 2022, 61(7), 5753–5769.

    Google Scholar

    [31] B. Qin, B. Tian, L. Liu, et al., Bäcklund Transformation and Multisoliton Solutions in Terms of Wronskian Determinant for (2+1)-Dimensional Breaking Soliton Equations with Symbolic Computation, Commun. Theor. Phys., 2010, 12, 1059–1066.

    Google Scholar

    [32] J. Su and S. Zhang, Nth-order rogue waves for the AB system via the determinants, Appl. Math. Lett., 2021, 112, 106714.

    Google Scholar

    [33] J. Su, Y. Gao, G. Deng, et al., Solitary waves, breathers, and rogue waves modulated by long waves for a model of a baroclinic shear flow, Phys. Rev. E, 2019, 100, 042210.

    Google Scholar

    [34] T. Sibel, K. A. Karmina, T. Sun, et al., Nonlinear pulse propagation for novel optical solitons modeled by Fokas system in monomode optical fibers, Results Phys., 2022, 36, 105381.

    Google Scholar

    [35] K. Sachin, K. D. Shubham, B. Dumitru, et al., Lie Symmetries, Closed-Form Solutions, and Various Dynamical Profiles of Solitons for the Variable Coefficient (2+1)-Dimensional KP Equations, Symmetry, 2022, 14(3), 597.

    Google Scholar

    [36] A. M. Wazwaz, A (2+1)-dimensional time-dependent Date-Jimbo-Kashiwara-Miwa equation: Painlevé integrability and multiple soliton solutions, Comput. Math. Appl., 2020, 79(4), 1145–1149.

    Google Scholar

    [37] X. Wu, B. Tian, Q. Qu, et al., Rogue waves for a (2+1)-dimensional Gross-Pitaevskii equation with time-varying trapping potential in the Bose-Einstein condensate, Comput. Math. Appl., 2020, 79(4), 1023–1030.

    Google Scholar

    [38] M. Wang, B. Tian, Y. Sun, et al., Lump, mixed lump-stripe and rogue wave-stripe solutions of a (3+1)-dimensional nonlinear wave equation for a liquid with gas bubbles, Comput. Math. Appl., 2020, 79(3), 576–587.

    Google Scholar

    [39] A. M. Wazwaz, A New Integrable (2+1)-Dimensional Generalized Breaking Soliton Equation: N-Soliton Solutions and Traveling Wave Solutions, Commun. Theor. Phys., 2016, 66(4), 385–388.

    Google Scholar

    [40] G. Xu and A. M. Wazwaz, Characteristics of integrability, bidirectional solitons and localized solutions for a (3+1)-dimensional generalized breaking soliton equation, Nonlinear Dyn., 2019, 96(3), 1989–2000.

    Google Scholar

    [41] J. Yu, B. Ren, J. Wang, et al., Finite Symmetry Transformation Groups and Exact Solutions of Three Generalized Breaking Soliton Equations, Chinese J. Phys., 2013, 51(4), 657–664.

    Google Scholar

    [42] C. Yue, A. Elmoasry, M. M. A. Khater, et al., complex wave structures related to the nonlinear long-short wave interaction system: Analytical and numerical techniques, AIP Adv., 2020, 10(4), 045212.

    Google Scholar

    [43] Y. Yin, W. Ma, J. Liu, et al., Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction, Comput. Math. Appl., 2018, 76, 1275–1283.

    Google Scholar

    [44] P. Zhang, New exact solutions to breaking soliton equations and Whitham-Broer-Kaup equations, Appl. Math. Comput., 2010, 217(4), 1688–1696.

    Google Scholar

    [45] Z. Zhao and L. He, Bäcklund transformations and Riemann-Bäcklund method to a (3+1)-dimensional generalized breaking soliton equation, Eur. Phys. J. Plus, 2020, 135(8), 639.

    Google Scholar

Figures(9)

Article Metrics

Article views(2230) PDF downloads(470) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint