Citation: | Dongping Li, Yankai Li, Fangqi Chen, Yukun An. VARIATIONAL FORMULATION FOR THE STURM-LIOUVILLE PROBLEM OF FRACTIONAL DIFFERENTIAL EQUATION WITH GENERALIZED (P, Q)-LAPLACIAN OPERATOR[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1225-1238. doi: 10.11948/20220004 |
In this paper, the Sturm-Liouville boundary value problem is studied for fractional differential equation with generalized (p, q)-Laplacian operator. By imposing mild assumptions on nonlinearity f, several new existence results of at least one or two nontrivial weak solutions are established through variational methods and critical point theorems. Furthermore, the criteria is also investigated for the nonexistence result.
[1] | I. Ameen and P. Novati, The solution of fractional order epidemic model by implicit Adams methods, Appl. Math. Model., 2017, 43, 78–84. doi: 10.1016/j.apm.2016.10.054 |
[2] | G. Afrouzi and A. Hadjian, A variational approach for boundary value problems for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 2018, 21, 1565–1584. doi: 10.1515/fca-2018-0082 |
[3] | R. Bartolo, A. Candela and A. Salvatore, On a class of superlinear (p, q)-Laplacian type equations on $ \mathbb{R}^N$, J. Math. Anal. Appl., 2016, 438, 29–41. doi: 10.1016/j.jmaa.2016.01.049 |
[4] |
M. Chaves, G. Ercole and O. Miyagaki, Existence of a nontrivial solution for the (p, q)-Laplacian in $ \mathbb{R}^N$ without the Ambrosetti-Rabinowitz condition, Nonlinear Anal., 2015, 114, 133–141. doi: 10.1016/j.na.2014.11.010
CrossRef $ \mathbb{R}^N$ without the Ambrosetti-Rabinowitz condition" target="_blank">Google Scholar |
[5] | K. Diethelm, The Analysis of Fractional Differential Equation, Springer, Heidelberg, 2010. |
[6] | C. He and G. Li, The regularity of weak solutions to nonlinear scalar field elliptic equations containing p-q-laplacians, Ann. Acad. Sci. Fenn-M., 2008, 33, 337–371. |
[7] | F. Jiao and Y. Zhou, Existence results for fractional boundary value problem via critical point theory, Int. J. Bifurcation Chaos, 2012, 22, 1250086 (17 pages). |
[8] | E. Khiabani, H. Ghaffarzadeh, B. Shiri, et al., Spline collocation methods for seismic analysis of multiple degree of freedom systems with visco-elastic dampers using fractional models, J. Vib. Control., 2020, 26, 1445–1462. doi: 10.1177/1077546319898570 |
[9] | A. Kilbas, H. Srivastava and J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Amsterdam: Elsevier Science B.V., 2006, 204, 2453–2461. |
[10] | L. Leibenson, General problem of the movement of a compressible fluid in a porous medium, Izv. Akad. Nauk Kirg. SSR., 1983, 9, 7–10. |
[11] | D. Li, F. Chen and Y. An, Existence and multiplicity of nontrivial solutions for nonlinear fractional differential systems with p-Laplacian via critical point theory, Math. Meth. Appl. Sci., 2018, 41, 3197–3212. doi: 10.1002/mma.4810 |
[12] | D. Li, F. Chen and Y. An, The existence of solutions for an impulsive fractional coupled system of (p, q)-Laplacian type without the Ambrosetti-Rabinowitz condition. , Math. Meth. Appl. Sci., 2019, 42, 1449–1464. doi: 10.1002/mma.5435 |
[13] | G. Li and X. Liang, The existence of nontrivial solutions to nonlinear elliptic equation of p-qlaplacian type on $ R^N$, Nonlinear Anal-Theor., 2009, 71, 2316–2334. doi: 10.1016/j.na.2009.01.066 |
[14] | J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Berlin, Springer-verlag, 1989. |
[15] | D. Min and F. Chen, Variational methods to the p-Laplacian type nonlinear fractional order impulsive differential equations with Sturm-Liouville boundary-value problem, Fract. Calc. Appl. Anal., 2021, 4, 1069–1093. |
[16] | N. Nyamoradi and S. Tersian, Existence of solutions for nonlinear fractional order p-Laplacian differential equations via critical point theory, Fract. Calc. Appl. Anal., 2019, 22, 945–967. doi: 10.1515/fca-2019-0051 |
[17] | I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. |
[18] | P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Am. Math. Soc., 1986, 65. |
[19] | Y. Tian and J. Nieto, The applications of critical-point theory to discontinuous fractional-order differential equations, Proc. Edinburgh Math. Soc., 2017, 60, 1021–1051. doi: 10.1017/S001309151600050X |
[20] | M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. |
[21] | E. Zeidler, Nonlinear Functional Analysis and Its Applications, Ⅲ, Variational Methods and optimization (Translated from the German by Leo F. Boron), Springer, New York, 1985. |
[22] | B. Zhu, L. Liu and Y. Wu, Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay, Comput. Math. Appl., 2019, 78, 1811–1818. doi: 10.1016/j.camwa.2016.01.028 |
[23] | W. Zhang and W. Zhang, Variational approach to fractional dirichlet problem with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 2020, 99, 105993. doi: 10.1016/j.aml.2019.07.024 |