2023 Volume 13 Issue 3
Article Contents

Dongping Li, Yankai Li, Fangqi Chen, Yukun An. VARIATIONAL FORMULATION FOR THE STURM-LIOUVILLE PROBLEM OF FRACTIONAL DIFFERENTIAL EQUATION WITH GENERALIZED (P, Q)-LAPLACIAN OPERATOR[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1225-1238. doi: 10.11948/20220004
Citation: Dongping Li, Yankai Li, Fangqi Chen, Yukun An. VARIATIONAL FORMULATION FOR THE STURM-LIOUVILLE PROBLEM OF FRACTIONAL DIFFERENTIAL EQUATION WITH GENERALIZED (P, Q)-LAPLACIAN OPERATOR[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1225-1238. doi: 10.11948/20220004

VARIATIONAL FORMULATION FOR THE STURM-LIOUVILLE PROBLEM OF FRACTIONAL DIFFERENTIAL EQUATION WITH GENERALIZED (P, Q)-LAPLACIAN OPERATOR

  • Author Bio: Email: li_dongping@126.com(D. Li); Email: fangqichen@nuaa.edu.cn(F. Chen); Email: anykna@nuaa.edu.cn(Y. An)
  • Corresponding author: Email: liyankai@xaut.edu.cn(Y. Li) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (12101481, 62103327), Shaanxi Fundamental Science Research Project for Mathematics and Physics (22JSQ022), Young Talent Fund of Association for Science and Technology in Shaanxi, China (20220529), Young Talent Fund of Association for Science and Technology in Xi'an, China (095920221344)
  • In this paper, the Sturm-Liouville boundary value problem is studied for fractional differential equation with generalized (p, q)-Laplacian operator. By imposing mild assumptions on nonlinearity f, several new existence results of at least one or two nontrivial weak solutions are established through variational methods and critical point theorems. Furthermore, the criteria is also investigated for the nonexistence result.

    MSC: 26A33, 34B15, 35A15
  • 加载中
  • [1] I. Ameen and P. Novati, The solution of fractional order epidemic model by implicit Adams methods, Appl. Math. Model., 2017, 43, 78–84. doi: 10.1016/j.apm.2016.10.054

    CrossRef Google Scholar

    [2] G. Afrouzi and A. Hadjian, A variational approach for boundary value problems for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 2018, 21, 1565–1584. doi: 10.1515/fca-2018-0082

    CrossRef Google Scholar

    [3] R. Bartolo, A. Candela and A. Salvatore, On a class of superlinear (p, q)-Laplacian type equations on $ \mathbb{R}^N$, J. Math. Anal. Appl., 2016, 438, 29–41. doi: 10.1016/j.jmaa.2016.01.049

    CrossRef $ \mathbb{R}^N$" target="_blank">Google Scholar

    [4] M. Chaves, G. Ercole and O. Miyagaki, Existence of a nontrivial solution for the (p, q)-Laplacian in $ \mathbb{R}^N$ without the Ambrosetti-Rabinowitz condition, Nonlinear Anal., 2015, 114, 133–141. doi: 10.1016/j.na.2014.11.010

    CrossRef $ \mathbb{R}^N$ without the Ambrosetti-Rabinowitz condition" target="_blank">Google Scholar

    [5] K. Diethelm, The Analysis of Fractional Differential Equation, Springer, Heidelberg, 2010.

    Google Scholar

    [6] C. He and G. Li, The regularity of weak solutions to nonlinear scalar field elliptic equations containing p-q-laplacians, Ann. Acad. Sci. Fenn-M., 2008, 33, 337–371.

    Google Scholar

    [7] F. Jiao and Y. Zhou, Existence results for fractional boundary value problem via critical point theory, Int. J. Bifurcation Chaos, 2012, 22, 1250086 (17 pages).

    Google Scholar

    [8] E. Khiabani, H. Ghaffarzadeh, B. Shiri, et al., Spline collocation methods for seismic analysis of multiple degree of freedom systems with visco-elastic dampers using fractional models, J. Vib. Control., 2020, 26, 1445–1462. doi: 10.1177/1077546319898570

    CrossRef Google Scholar

    [9] A. Kilbas, H. Srivastava and J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Amsterdam: Elsevier Science B.V., 2006, 204, 2453–2461.

    Google Scholar

    [10] L. Leibenson, General problem of the movement of a compressible fluid in a porous medium, Izv. Akad. Nauk Kirg. SSR., 1983, 9, 7–10.

    Google Scholar

    [11] D. Li, F. Chen and Y. An, Existence and multiplicity of nontrivial solutions for nonlinear fractional differential systems with p-Laplacian via critical point theory, Math. Meth. Appl. Sci., 2018, 41, 3197–3212. doi: 10.1002/mma.4810

    CrossRef Google Scholar

    [12] D. Li, F. Chen and Y. An, The existence of solutions for an impulsive fractional coupled system of (p, q)-Laplacian type without the Ambrosetti-Rabinowitz condition. , Math. Meth. Appl. Sci., 2019, 42, 1449–1464. doi: 10.1002/mma.5435

    CrossRef Google Scholar

    [13] G. Li and X. Liang, The existence of nontrivial solutions to nonlinear elliptic equation of p-qlaplacian type on $ R^N$, Nonlinear Anal-Theor., 2009, 71, 2316–2334. doi: 10.1016/j.na.2009.01.066

    CrossRef $ R^N$" target="_blank">Google Scholar

    [14] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Berlin, Springer-verlag, 1989.

    Google Scholar

    [15] D. Min and F. Chen, Variational methods to the p-Laplacian type nonlinear fractional order impulsive differential equations with Sturm-Liouville boundary-value problem, Fract. Calc. Appl. Anal., 2021, 4, 1069–1093.

    Google Scholar

    [16] N. Nyamoradi and S. Tersian, Existence of solutions for nonlinear fractional order p-Laplacian differential equations via critical point theory, Fract. Calc. Appl. Anal., 2019, 22, 945–967. doi: 10.1515/fca-2019-0051

    CrossRef Google Scholar

    [17] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

    Google Scholar

    [18] P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Am. Math. Soc., 1986, 65.

    Google Scholar

    [19] Y. Tian and J. Nieto, The applications of critical-point theory to discontinuous fractional-order differential equations, Proc. Edinburgh Math. Soc., 2017, 60, 1021–1051. doi: 10.1017/S001309151600050X

    CrossRef Google Scholar

    [20] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.

    Google Scholar

    [21] E. Zeidler, Nonlinear Functional Analysis and Its Applications, Ⅲ, Variational Methods and optimization (Translated from the German by Leo F. Boron), Springer, New York, 1985.

    Google Scholar

    [22] B. Zhu, L. Liu and Y. Wu, Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay, Comput. Math. Appl., 2019, 78, 1811–1818. doi: 10.1016/j.camwa.2016.01.028

    CrossRef Google Scholar

    [23] W. Zhang and W. Zhang, Variational approach to fractional dirichlet problem with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 2020, 99, 105993. doi: 10.1016/j.aml.2019.07.024

    CrossRef Google Scholar

Article Metrics

Article views(1869) PDF downloads(314) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint