2022 Volume 12 Issue 6
Article Contents

Longfei Gu, Yuanyuan Liu, Rihang Lin. SOME INTEGRAL REPRESENTATION FORMULAS AND SCHWARZ LEMMAS RELATED TO PERTURBED DIRAC OPERATORS[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2475-2487. doi: 10.11948/20220033
Citation: Longfei Gu, Yuanyuan Liu, Rihang Lin. SOME INTEGRAL REPRESENTATION FORMULAS AND SCHWARZ LEMMAS RELATED TO PERTURBED DIRAC OPERATORS[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2475-2487. doi: 10.11948/20220033

SOME INTEGRAL REPRESENTATION FORMULAS AND SCHWARZ LEMMAS RELATED TO PERTURBED DIRAC OPERATORS

  • Corresponding authors: Email: liuyuanyuan1117@163.com(Y. Liu);  Email: gulongfei@lyu.edu.cn(L. Gu) 
  • Fund Project: The authors were supported by NSF of Shandong Province (Nos. ZR2021MA079, ZR2022MA093), NSF of China (Nos. 12171221, 12071198), China Postdoctoral Science Foundation (No. 2021M691851) and USIP of Linyi University (No. X202110452285)
  • In this paper, we first obtain some integral representations for perturbed Dirac operators by using the fundamental solutions of the modified Helmholtz equation and Clifford calculus approach. Second, based on the exhaustion of arbitrary open subsets and integral representations, we investigate generalized Cauchy type integral representation formulas. Moreover, we establish Schwarz lemmas for the null solutions of perturbed Dirac operators in $ \mathbb{R}^{3} $. Finally, as applications, we solve a kind of Dirichlet boundary value problem for perturbed Dirac operators and give the explicit representation of the solution.

    MSC: 30G35, 34B15, 11F85, 32A55
  • 加载中
  • [1] R. Abreu Blaya, J. Bory Reyes and D. Peña-Peña, Jump problem and removable singularities for monogenic functions, J. Geom. Anal., 2007, 17, 1-13.

    Google Scholar

    [2] R. Abreu Blaya, J. Bory Reyes, F. Brackx, H. De Schepper and F. Sommen, A Hermitian Cauchy formula on a domain with fractal boundary, J. Math. Anal. Appl., 2010, 369, 273-282.

    Google Scholar

    [3] R. Abreu Blaya, J. Bory Reyes and B. A. Kats, Integration over non-rectifiable curves and Riemann boundary value problems, J. Math. Anal. Appl., 2011, 380, 177-187. doi: 10.1016/j.jmaa.2011.02.068

    CrossRef Google Scholar

    [4] R. Abreu Blaya, J. Bory Reyes, F. Brackx, H. De Schepper and F. Sommen, Boundary value problems associated to a Hermitian Helmholtz equation, J. Math. Anal. Appl., 2012, 389, 1268-1279. doi: 10.1016/j.jmaa.2012.01.006

    CrossRef Google Scholar

    [5] R. Abreu Blaya, J. Bory Reyes, M. A. Herrera-Peláez and J. M. Sigarreta-Almira, Integral representation formulas related to the Lamé-Navier system, Acta Math. Sin. (Engl. Ser. ), 2020, 36, 1341-1356. doi: 10.1007/s10114-020-9332-2

    CrossRef Google Scholar

    [6] L. V. Ahlfors, An extension of Schwarz's lemma, Trans. Am. Math. Soc., 1938, 43(3), 359-364.

    Google Scholar

    [7] H. Begehr, H. Otto and Z. Zhang, Differential operators, their fundamental solutions and related integral representations in Clifford analysis, Complex Var. Elliptic Equ., 2006, 51, 407-427. doi: 10.1080/17476930500481327

    CrossRef Google Scholar

    [8] H. Begehr, Z. Zhang and T. Vu, Generalized integral representations in Clifford analysis, Complex Var. Elliptic Equ., 2006, 51, 745-762.

    Google Scholar

    [9] S. Bernstein, On the left linear Riemann problem in Clifford analysis, Bull. Belg. Math. Soc. Simon Stevin, 1996, 3, 557-576.

    Google Scholar

    [10] J. Bory Reyes, H. De Schepper, A. G. Adán and F. Sommen, Higher order Borel-Pompeiu representations in Clifford analysis, Math. Meth. Appl. Sci., 2016, 39, 4787-4796.

    Google Scholar

    [11] F. Brackx, R. Delanghe and F. Sommen, Clifford analysis, Research Notes in Mathematics, Pitman Books Ltd., London, 1982, 76.

    Google Scholar

    [12] D. M. Burns and S. G. Krantz, Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary, J. Am. Math. Soc., 1994, 7(3), 661-767.

    Google Scholar

    [13] R. Delanghe, On the regular analytic functions with values in a Clifford algebra, Math. Ann., 1970, 185, 91-111.

    Google Scholar

    [14] R. Delanghe, On the singularities of functions with values in a Clifford algebra, Math. Ann., 1972, 196, 293-319.

    Google Scholar

    [15] R. Delanghe, F. Sommen and Souček, Clifford Algebras and Spinor-valued Functions, Kluwer Academic Pulishers, 1992.

    Google Scholar

    [16] K. Gürlebeck, K. Habetha and W. Sprössig, Holomorphic Functions in the Plane and n-Dimensional Space, Birkhäuser, Basel, 2008.

    Google Scholar

    [17] K. Gürlebeck, K. Habetha and W. Sprössig, Application of Holomorphic Functions in Two and Higher Dimensions, Birkhäuser, Basel, 2016.

    Google Scholar

    [18] K. Gürlebeck and Z. Zhang, Some Riemann boundary value problems in Clifford analysis, Math. Meth. Appl. Sci., 2010, 33, 287-302.

    Google Scholar

    [19] K. Gürlebeck and Z. Zhang, Generalized Integral representations for functions with values in $C(V_{3, 3})$, Chin. Ann. Math. Ser. B, 2011, 32, 123-138.

    Google Scholar

    [20] L. Gu and D. Ma, Dirac Operators with Gradient Potentials and Related Monogenic Functions, Complex Anal. Oper. Theory, 2020, 14(53). https://doi.org/10.1007/s11785-020-01010-5. doi: 10.1007/s11785-020-01010-5

    CrossRef Google Scholar

    [21] L. Gu, Schwarz-Type lemmas associated to a Helmholtz equation, Adv. Appl. Clifford Algebras, 2020, 30(14). https://doi.org/10.1007/s00006-020-1040-6. doi: 10.1007/s00006-020-1040-6

    CrossRef Google Scholar

    [22] S. G. Krantz, Function Theory of Several Complex Variables, American Mathematical Society, Providence, 2001.

    Google Scholar

    [23] S. G. Krantz, The Schwarz lemma at the boundary, Complex Var. Elliptic Equ., 2011, 56(5), 455-468.

    Google Scholar

    [24] W. Luo and J. Du, Generalized Cauchy theorem in Clifford analysis and boundary value problems for regular functions, Adv. Appl. Clifford Algebr., 2017, 27, 2531-2583.

    Google Scholar

    [25] T. Liu and X. Tang, Schwarz lemma at the boundary of strongly psedoconvex domain in $\mathbb{C}^{n}$, Math. Ann., 2016, 366, 655-666.

    Google Scholar

    [26] R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Graduate Texts in Mathematics, Vol. 108, Springer-Verlag, Berlin, 1986.

    Google Scholar

    [27] G. Ren and X. Wang, Julia theory for slice regular functions, Trans. Am. Math. Soc., 2017, 369(3), 861-885.

    Google Scholar

    [28] B. Rodin, Schwarz's lemma for circle packings, Invent. Math., 1987, 89(2), 271-289.

    Google Scholar

    [29] Y. S. Smyrlis, Applicability and applications of the method of fundamental solutions, Math. Comput., 2009, 78, 1399-1434.

    Google Scholar

    [30] H. Tsuji, A general Schwarz lemma, Math. Ann., 1981, 256(3), 387-290.

    Google Scholar

    [31] S. T. Yau, A general Schwarz lemma for Kähler manifolds, Am. J. Math., 1978, 100(1), 197-203.

    Google Scholar

    [32] Y. Yang and T. Qian, Schwarz lemma in Euclidean spaces, Complex Var. Elliptic Equ., 2006, 51, 653-659.

    Google Scholar

    [33] Z. Zhang, The Schwarz Lemma in Clifford analysis, Proc. Amer. Math. Soc., 2014, 142(4), 1237-1248.

    Google Scholar

    [34] Z. Zhang, The Schwarz lemma for functions with values in $C(V_{n, 0})$, J. Math. Anal. Appl., 2016, 443, 1130-1141.

    Google Scholar

Article Metrics

Article views(2130) PDF downloads(462) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint