Citation: | Longfei Gu, Yuanyuan Liu, Rihang Lin. SOME INTEGRAL REPRESENTATION FORMULAS AND SCHWARZ LEMMAS RELATED TO PERTURBED DIRAC OPERATORS[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2475-2487. doi: 10.11948/20220033 |
In this paper, we first obtain some integral representations for perturbed Dirac operators by using the fundamental solutions of the modified Helmholtz equation and Clifford calculus approach. Second, based on the exhaustion of arbitrary open subsets and integral representations, we investigate generalized Cauchy type integral representation formulas. Moreover, we establish Schwarz lemmas for the null solutions of perturbed Dirac operators in $ \mathbb{R}^{3} $. Finally, as applications, we solve a kind of Dirichlet boundary value problem for perturbed Dirac operators and give the explicit representation of the solution.
[1] | R. Abreu Blaya, J. Bory Reyes and D. Peña-Peña, Jump problem and removable singularities for monogenic functions, J. Geom. Anal., 2007, 17, 1-13. |
[2] | R. Abreu Blaya, J. Bory Reyes, F. Brackx, H. De Schepper and F. Sommen, A Hermitian Cauchy formula on a domain with fractal boundary, J. Math. Anal. Appl., 2010, 369, 273-282. |
[3] | R. Abreu Blaya, J. Bory Reyes and B. A. Kats, Integration over non-rectifiable curves and Riemann boundary value problems, J. Math. Anal. Appl., 2011, 380, 177-187. doi: 10.1016/j.jmaa.2011.02.068 |
[4] | R. Abreu Blaya, J. Bory Reyes, F. Brackx, H. De Schepper and F. Sommen, Boundary value problems associated to a Hermitian Helmholtz equation, J. Math. Anal. Appl., 2012, 389, 1268-1279. doi: 10.1016/j.jmaa.2012.01.006 |
[5] | R. Abreu Blaya, J. Bory Reyes, M. A. Herrera-Peláez and J. M. Sigarreta-Almira, Integral representation formulas related to the Lamé-Navier system, Acta Math. Sin. (Engl. Ser. ), 2020, 36, 1341-1356. doi: 10.1007/s10114-020-9332-2 |
[6] | L. V. Ahlfors, An extension of Schwarz's lemma, Trans. Am. Math. Soc., 1938, 43(3), 359-364. |
[7] | H. Begehr, H. Otto and Z. Zhang, Differential operators, their fundamental solutions and related integral representations in Clifford analysis, Complex Var. Elliptic Equ., 2006, 51, 407-427. doi: 10.1080/17476930500481327 |
[8] | H. Begehr, Z. Zhang and T. Vu, Generalized integral representations in Clifford analysis, Complex Var. Elliptic Equ., 2006, 51, 745-762. |
[9] | S. Bernstein, On the left linear Riemann problem in Clifford analysis, Bull. Belg. Math. Soc. Simon Stevin, 1996, 3, 557-576. |
[10] | J. Bory Reyes, H. De Schepper, A. G. Adán and F. Sommen, Higher order Borel-Pompeiu representations in Clifford analysis, Math. Meth. Appl. Sci., 2016, 39, 4787-4796. |
[11] | F. Brackx, R. Delanghe and F. Sommen, Clifford analysis, Research Notes in Mathematics, Pitman Books Ltd., London, 1982, 76. |
[12] | D. M. Burns and S. G. Krantz, Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary, J. Am. Math. Soc., 1994, 7(3), 661-767. |
[13] | R. Delanghe, On the regular analytic functions with values in a Clifford algebra, Math. Ann., 1970, 185, 91-111. |
[14] | R. Delanghe, On the singularities of functions with values in a Clifford algebra, Math. Ann., 1972, 196, 293-319. |
[15] | R. Delanghe, F. Sommen and Souček, Clifford Algebras and Spinor-valued Functions, Kluwer Academic Pulishers, 1992. |
[16] | K. Gürlebeck, K. Habetha and W. Sprössig, Holomorphic Functions in the Plane and n-Dimensional Space, Birkhäuser, Basel, 2008. |
[17] | K. Gürlebeck, K. Habetha and W. Sprössig, Application of Holomorphic Functions in Two and Higher Dimensions, Birkhäuser, Basel, 2016. |
[18] | K. Gürlebeck and Z. Zhang, Some Riemann boundary value problems in Clifford analysis, Math. Meth. Appl. Sci., 2010, 33, 287-302. |
[19] | K. Gürlebeck and Z. Zhang, Generalized Integral representations for functions with values in $C(V_{3, 3})$, Chin. Ann. Math. Ser. B, 2011, 32, 123-138. |
[20] | L. Gu and D. Ma, Dirac Operators with Gradient Potentials and Related Monogenic Functions, Complex Anal. Oper. Theory, 2020, 14(53). https://doi.org/10.1007/s11785-020-01010-5. doi: 10.1007/s11785-020-01010-5 |
[21] | L. Gu, Schwarz-Type lemmas associated to a Helmholtz equation, Adv. Appl. Clifford Algebras, 2020, 30(14). https://doi.org/10.1007/s00006-020-1040-6. doi: 10.1007/s00006-020-1040-6 |
[22] | S. G. Krantz, Function Theory of Several Complex Variables, American Mathematical Society, Providence, 2001. |
[23] | S. G. Krantz, The Schwarz lemma at the boundary, Complex Var. Elliptic Equ., 2011, 56(5), 455-468. |
[24] | W. Luo and J. Du, Generalized Cauchy theorem in Clifford analysis and boundary value problems for regular functions, Adv. Appl. Clifford Algebr., 2017, 27, 2531-2583. |
[25] | T. Liu and X. Tang, Schwarz lemma at the boundary of strongly psedoconvex domain in $\mathbb{C}^{n}$, Math. Ann., 2016, 366, 655-666. |
[26] | R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Graduate Texts in Mathematics, Vol. 108, Springer-Verlag, Berlin, 1986. |
[27] | G. Ren and X. Wang, Julia theory for slice regular functions, Trans. Am. Math. Soc., 2017, 369(3), 861-885. |
[28] | B. Rodin, Schwarz's lemma for circle packings, Invent. Math., 1987, 89(2), 271-289. |
[29] | Y. S. Smyrlis, Applicability and applications of the method of fundamental solutions, Math. Comput., 2009, 78, 1399-1434. |
[30] | H. Tsuji, A general Schwarz lemma, Math. Ann., 1981, 256(3), 387-290. |
[31] | S. T. Yau, A general Schwarz lemma for Kähler manifolds, Am. J. Math., 1978, 100(1), 197-203. |
[32] | Y. Yang and T. Qian, Schwarz lemma in Euclidean spaces, Complex Var. Elliptic Equ., 2006, 51, 653-659. |
[33] | Z. Zhang, The Schwarz Lemma in Clifford analysis, Proc. Amer. Math. Soc., 2014, 142(4), 1237-1248. |
[34] | Z. Zhang, The Schwarz lemma for functions with values in $C(V_{n, 0})$, J. Math. Anal. Appl., 2016, 443, 1130-1141. |