2023 Volume 13 Issue 1
Article Contents

H. M. Rezk, Ghada ALNemer, Ahmed I. Saied, E. Awwad, M. Zakarya. MULTIDIMENSIONAL REVERSE HÖLDER INEQUALITY ON TIME SCALES[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 298-312. doi: 10.11948/20220092
Citation: H. M. Rezk, Ghada ALNemer, Ahmed I. Saied, E. Awwad, M. Zakarya. MULTIDIMENSIONAL REVERSE HÖLDER INEQUALITY ON TIME SCALES[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 298-312. doi: 10.11948/20220092

MULTIDIMENSIONAL REVERSE HÖLDER INEQUALITY ON TIME SCALES

  • This paper develops the study of Hölder's inequality with weighted functions where we can establish some new multidimensional reverse Hölder inequality on time scale measure spaces. Our results will be proved by using the definition and some properties of a Specht's ratio function. We will prove these inequalities in a time scale calculus to avoid proving them twice once in the continuous case and the second in the discrete case.

    MSC: 26D15, 34N05, 47B38
  • 加载中
  • [1] M. R. S. Ammi and D. F. M. Torres, Hölder's and Hardy's two dimensional diamond-alpha inequalities on time scales, Ann. Univ. Craiova Math. Comp. Sci. Series, 2010, 37, 1–11.

    Google Scholar

    [2] G. AlNemer, M. Kenawy, M. Zakarya, C. Cesarano and H. M. Rezk, Generalizations of Hardy's Type Inequalities Via Conformable Calculus, Symmetry, 2021, 13(242), 1–13.

    Google Scholar

    [3] G. AlNemer, A. I. Saied, M. Zakarya, H. A. El-Hamid, O. Bazighifan and H. M. Rezk, Some New Reverse Hilbert's Inequalities on Time Scales, Symmetry, 2021, 3(12), 1–15.

    Google Scholar

    [4] A. M. Ahmed, G. AlNemer, M. Zakarya and H. M. Rezk, Some dynamic inequalities of Hilbert's type, Journal of Function Spaces, 2020, 1–13.

    Google Scholar

    [5] G. AlNemer, M. Zakarya, H. A. Abd El-Hamid, P. Agarwal and H. M. Rezk, Some Dynamic Hilbert-type inequality on time scales, Symmetry, 2020, 1–13.

    Google Scholar

    [6] G. AlNemer, M. Zakarya, H. A. Abd El-Hamid, M. R. Kenawy and H. M. Rezk, Dynamic Hardy-type inequalities with non-conjugate parameters, Alexandria Engineering Journal, 2020, 1–10.

    Google Scholar

    [7] R. P. Agarwal, M. Bohner and A. Peterson, Inequalities on time scales: a survey, Mathematical inequalities and applications, 2001, 4, 535–558.

    Google Scholar

    [8] R. P. Agarwal, D. O'Regan and S. H. Saker, Dynamic Inequalities on Time Scales, Springer, 2014.

    Google Scholar

    [9] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An introduction with applications, Birkhäuser, Boston, Mass, the USA, 2001.

    Google Scholar

    [10] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Springer Science & Business Media, 2002.

    Google Scholar

    [11] A. A. El-Deeb, H. A. Elsennary and W. S. Cheung, Some reverse Hölder inequalities with Specht's ratio on time scales, J. Nonlinear Sci. Appl., 2018, 11(4), 444–455. doi: 10.22436/jnsa.011.04.01

    CrossRef Google Scholar

    [12] O. Hölder, Uber einen Mittelwerthssatz, Nachr. Ges. Wiss. Gottingen, 1889, 38–47.

    Google Scholar

    [13] S. Hilger, Analysis on measure chains–a unied approach to continuous and discrete calculus, Results Math., 1990, 18, 18–56. doi: 10.1007/BF03323153

    CrossRef Google Scholar

    [14] D. O'Regan, H. M. Rezk and S. H. Saker, Some dynamic inequalities involving Hilbert and Hardy-Hilbert operators with kernels, Results in Mathematics, 2018, 73((146), 1–22.

    Google Scholar

    [15] S. H. Saker, A. I. Saied and M. Krnić, Some New Weighted Dynamic Inequalities for Monotone Functions Involving Kernels, Mediterranean Journal of Mathematics, 2020, 17(2), 1–18.

    Google Scholar

    [16] J. Tian, Triple Diamond-Alpha integral and Hölder-type inequalities, Journal of inequalities and applications, 2018, 1, 1–14.

    Google Scholar

    [17] M. Tominaga, Specht's ratio in the Young inequality, Scientiae Mathematicae Japonicae, 2002, 55(3), 583–588.

    Google Scholar

    [18] C. Wang, Variants of the Hölder Inequality and Its Inverse, University of Regina, Department of Mathematics, 1977.

    Google Scholar

    [19] F. H. Wong, C. C. Yeh, S. L. Yu and C. H. Hong, Youngís inequality and related results on time scales, Applied Mathematics Letters, 2005, 18(9), 983–988. doi: 10.1016/j.aml.2004.06.028

    CrossRef Google Scholar

    [20] C. Zhao and W. S. Cheung, Hölder's reverse inequality and its applications. Publications de l'Institut Mathematique, 2016, 99(113), 211–216. doi: 10.2298/PIM1613211Z

    CrossRef Google Scholar

    [21] M. Zakarya, H. A. Abd El-Hamid, G. Al Nemer and H. M. Rezk, More on Hölder's Inequality and It's Reverse via the Diamond-Alpha Integral, Symmetry, 2020, 12(12), 1–19.

    Google Scholar

    [22] M. Zakarya, M. Altanji, G. AlNemer, H. A. Abd El-Hamid, C. Cesarano and H. M. Rezk, Fractional Reverse Coposn's Inequalities via Conformable Calculus on Time Scales, Symmetry, 2021, 13(4), 1–16.

    Google Scholar

Article Metrics

Article views(2148) PDF downloads(447) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint