Citation: | H. M. Rezk, Ghada ALNemer, Ahmed I. Saied, E. Awwad, M. Zakarya. MULTIDIMENSIONAL REVERSE HÖLDER INEQUALITY ON TIME SCALES[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 298-312. doi: 10.11948/20220092 |
This paper develops the study of Hölder's inequality with weighted functions where we can establish some new multidimensional reverse Hölder inequality on time scale measure spaces. Our results will be proved by using the definition and some properties of a Specht's ratio function. We will prove these inequalities in a time scale calculus to avoid proving them twice once in the continuous case and the second in the discrete case.
[1] | M. R. S. Ammi and D. F. M. Torres, Hölder's and Hardy's two dimensional diamond-alpha inequalities on time scales, Ann. Univ. Craiova Math. Comp. Sci. Series, 2010, 37, 1–11. |
[2] | G. AlNemer, M. Kenawy, M. Zakarya, C. Cesarano and H. M. Rezk, Generalizations of Hardy's Type Inequalities Via Conformable Calculus, Symmetry, 2021, 13(242), 1–13. |
[3] | G. AlNemer, A. I. Saied, M. Zakarya, H. A. El-Hamid, O. Bazighifan and H. M. Rezk, Some New Reverse Hilbert's Inequalities on Time Scales, Symmetry, 2021, 3(12), 1–15. |
[4] | A. M. Ahmed, G. AlNemer, M. Zakarya and H. M. Rezk, Some dynamic inequalities of Hilbert's type, Journal of Function Spaces, 2020, 1–13. |
[5] | G. AlNemer, M. Zakarya, H. A. Abd El-Hamid, P. Agarwal and H. M. Rezk, Some Dynamic Hilbert-type inequality on time scales, Symmetry, 2020, 1–13. |
[6] | G. AlNemer, M. Zakarya, H. A. Abd El-Hamid, M. R. Kenawy and H. M. Rezk, Dynamic Hardy-type inequalities with non-conjugate parameters, Alexandria Engineering Journal, 2020, 1–10. |
[7] | R. P. Agarwal, M. Bohner and A. Peterson, Inequalities on time scales: a survey, Mathematical inequalities and applications, 2001, 4, 535–558. |
[8] | R. P. Agarwal, D. O'Regan and S. H. Saker, Dynamic Inequalities on Time Scales, Springer, 2014. |
[9] | M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An introduction with applications, Birkhäuser, Boston, Mass, the USA, 2001. |
[10] | M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Springer Science & Business Media, 2002. |
[11] | A. A. El-Deeb, H. A. Elsennary and W. S. Cheung, Some reverse Hölder inequalities with Specht's ratio on time scales, J. Nonlinear Sci. Appl., 2018, 11(4), 444–455. doi: 10.22436/jnsa.011.04.01 |
[12] | O. Hölder, Uber einen Mittelwerthssatz, Nachr. Ges. Wiss. Gottingen, 1889, 38–47. |
[13] | S. Hilger, Analysis on measure chains–a unied approach to continuous and discrete calculus, Results Math., 1990, 18, 18–56. doi: 10.1007/BF03323153 |
[14] | D. O'Regan, H. M. Rezk and S. H. Saker, Some dynamic inequalities involving Hilbert and Hardy-Hilbert operators with kernels, Results in Mathematics, 2018, 73((146), 1–22. |
[15] | S. H. Saker, A. I. Saied and M. Krnić, Some New Weighted Dynamic Inequalities for Monotone Functions Involving Kernels, Mediterranean Journal of Mathematics, 2020, 17(2), 1–18. |
[16] | J. Tian, Triple Diamond-Alpha integral and Hölder-type inequalities, Journal of inequalities and applications, 2018, 1, 1–14. |
[17] | M. Tominaga, Specht's ratio in the Young inequality, Scientiae Mathematicae Japonicae, 2002, 55(3), 583–588. |
[18] | C. Wang, Variants of the Hölder Inequality and Its Inverse, University of Regina, Department of Mathematics, 1977. |
[19] | F. H. Wong, C. C. Yeh, S. L. Yu and C. H. Hong, Youngís inequality and related results on time scales, Applied Mathematics Letters, 2005, 18(9), 983–988. doi: 10.1016/j.aml.2004.06.028 |
[20] | C. Zhao and W. S. Cheung, Hölder's reverse inequality and its applications. Publications de l'Institut Mathematique, 2016, 99(113), 211–216. doi: 10.2298/PIM1613211Z |
[21] | M. Zakarya, H. A. Abd El-Hamid, G. Al Nemer and H. M. Rezk, More on Hölder's Inequality and It's Reverse via the Diamond-Alpha Integral, Symmetry, 2020, 12(12), 1–19. |
[22] | M. Zakarya, M. Altanji, G. AlNemer, H. A. Abd El-Hamid, C. Cesarano and H. M. Rezk, Fractional Reverse Coposn's Inequalities via Conformable Calculus on Time Scales, Symmetry, 2021, 13(4), 1–16. |