2023 Volume 13 Issue 1
Article Contents

İhsan Çelikkaya, Ahmet Güzel. FOUR NUMERICAL SCHEMES FOR SOLUTION OF BURGERS' EQUATION VIA OPERATOR SPLITTING TRIGONOMETRIC CUBIC B-SPLINE COLLOCATION METHOD[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 313-328. doi: 10.11948/20220095
Citation: İhsan Çelikkaya, Ahmet Güzel. FOUR NUMERICAL SCHEMES FOR SOLUTION OF BURGERS' EQUATION VIA OPERATOR SPLITTING TRIGONOMETRIC CUBIC B-SPLINE COLLOCATION METHOD[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 313-328. doi: 10.11948/20220095

FOUR NUMERICAL SCHEMES FOR SOLUTION OF BURGERS' EQUATION VIA OPERATOR SPLITTING TRIGONOMETRIC CUBIC B-SPLINE COLLOCATION METHOD

  • In this study, we have used operator splitting methods for numerical solutions of the Burgers' equation by given four different numerical schemes. To set these schemes, we divide the Burgers equation into two sub-problems according to the time term, as linear $ U_{t}=\mathcal{L}(U) $ and nonlinear $ U_{t}=\mathcal{N}(U) $. Then, numerical schemes have been obtained by the finite element method using trigonometric cubic B-spline basis for each sub-problem. Splitting $ \mathcal{L}\circ\mathcal{N} $, $ \mathcal{N}\circ\mathcal{L} $ Lie-Trotter and $ \mathcal{L}\circ\mathcal{N} \circ \mathcal{L} $, $ \mathcal{N\circ L\circ N} $ Strang splitting solution schemes have been used to obtain the solution of the main equation. Numerical results calculated with these schemes have been compared among themselves in terms of $ L_{2} $, $ L_{\infty} $ error norms and CPU time. Furthermore, the numerical results have been compared with some studies that solved the equation directly with the same method. It has been observed that the numerical results obtained with the proposed schemes are in agreement with the exact solution and other studies in the literature. All calculations are obtained using Matlab Version R2015a.

    MSC: 65M70, 35G31, 65Z05, 65D05, 65D07, 65L20
  • 加载中
  • [1] B. Ay, İ. Dağ and M. Z. Görgülü, Trigonometric quadratic B-spline subdomain Galerkin algorithm for the Burgers' equation, Open Phys., 2015, 13, 400–406. DOI 10.1515/phys-2015-0059 doi: 10.1515/phys-2015-0059

    CrossRef Google Scholar

    [2] H. Bateman, Some recent researches on the motion of fluids, Monthly Weather Rev., 1915, 43, 163–170. doi: 10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO;2

    CrossRef Google Scholar

    [3] J. M. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1948, 1, 171–199.

    Google Scholar

    [4] J. M. Burgers, Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion, Trans. R. Neth. Acad. Sci. Amst., 1939, 17, 1–53.

    Google Scholar

    [5] A. G. Bratsos, A fourth-order numerical scheme for solving the modified Burgers' equation, Comput. Math. with Appl., 2010, 60, 1393–1400. doi: 10.1016/j.camwa.2010.06.021

    CrossRef Google Scholar

    [6] H. Brezis and F. Browder, Partial Differential Equations in the 20th Century, 1998, 135, 76–144. Article No. AI971713.

    Google Scholar

    [7] S. Blanes, F. Casas and A. Murua, Splitting and composition methods in the numerical integration of differential equations, Bol. Soc. Esp. Mat. Apl., 2008, 45, 89–145.

    Google Scholar

    [8] J. D. Cole, On a quasilinear parabolic equation occurring in aerodynamics, Quart. Appl. Math., 1951, 9, 225–236. doi: 10.1090/qam/42889

    CrossRef Google Scholar

    [9] İ. Dağ, Ö. E. Hepson and Ö. Kaçmaz, The trigonometric cubic B-spline Algorithm for Burgers' Equation, Int. J. Nonlinear Sci., 2017, 24(2), 120–128.

    Google Scholar

    [10] İ. Dağ, D. Irk and B. Saka, A numerical solution of the Burgers' equation using cubic B-splines, Appl. Math. Comput., 2005, 163, 199–211. doi: 10.1016/j.amc.2004.01.028

    CrossRef Google Scholar

    [11] İ. Dağ, D. Irk and A. Şahin, B-spline collocation methods for numerical solitions of the Burgers' equation, Math. Probl. Eng., 2005, 5, 521–538. DOI: 10.1155/MPE.2005.521

    CrossRef Google Scholar

    [12] Ö. Ersoy and G. Yiğit, Quartic Trigonometric Tension B-Spline Method for the Solution of the Advection-Diffusion Equation, Comput. Appl. Math., 2021, 40(141), 1–15. doi. org/10.1007/s40314-021-01526-2 doi: 10.1007/s40314-021-01526-2

    CrossRef Google Scholar

    [13] O. Ersoy, I. Dag and N. Adar, The exponential cubic B-spline algorithm for Burgers' equation, Ukr. Math. J., 2018, 70(6), 906–921. doi. org/10.1007/s11253-018-1541-9 doi: 10.1007/s11253-018-1541-9

    CrossRef Google Scholar

    [14] Ö. Ersoy, Generation Of The Trigonometric Cubic B-spline Collocation Solutions for the KuramotoSivashinsky(KS) Equation, AIP Conf. Proc., 2018, 470099. doi. org/10.1063/1.5044169 doi: 10.1063/1.5044169

    CrossRef Google Scholar

    [15] Ö. Ersoy, A Numerical Simulation of Kuramoto-Sivashinsky Equation in Reaction-Diffusion via Galerkin Method, Mathematical Science, 2021, 15, 199–206. doi. org/10.1007/s40096-021-00402-8 doi: 10.1007/s40096-021-00402-8

    CrossRef Google Scholar

    [16] Y. Gao, L. Le and B. Shi, Numerical solution of Burgers' equation by lattice Boltzmann method, Appl. Math. Comput., 2013, 219, 7685–7692. doi. org/10.1016/j.amc.2013.01.056 doi: 10.1016/j.amc.2013.01.056

    CrossRef Google Scholar

    [17] W. Hundsdorfer, Numerical Solution of Advection-Diffüsion-Reaction Equations, Lecture notes for PH. D. course, Thomas Stieltjes İnstitute, Amsterdam, 2000.

    Google Scholar

    [18] S. Kutluay, A. Esen and İ. Dağ, Numerical solutions of the Burgers' equation by the least-squares quadratic B-spline finite element method, J. Comput. Appl. Math., 2004, 167, 21–33. doi: 10.1016/j.cam.2003.09.043

    CrossRef Google Scholar

    [19] S. Kutluay and A. Esen, A Lumped galerkin method for solving the Burgers' equation, Int. J. Comput. Math., 2004, 81, 1433–1444. DOI: 10.1080/00207160412331286833

    CrossRef Google Scholar

    [20] P. E. Koch, Multivariate trigonometric B-splines, J. Approx. Theory, 1988, 54, 162–168. doi: 10.1016/0021-9045(88)90016-0

    CrossRef Google Scholar

    [21] R. C. Mittal and R. K. Jain, Numerical solutions of nonlinear Burgers' equation with modified cubic B-splines collocation method, Appl. Math. Comput., 2012, 218, 7839–7855. doi: 10.1016/j.amc.2012.01.059

    CrossRef Google Scholar

    [22] G. I. Marchuk, Some application of splitting-up methods to the solution of mathematical physics problems, Aplikace matematiky, 1968, 13, 103–132.

    Google Scholar

    [23] A. T. Onarcan and Ö. Ersoy, Higher order Trigonometric B-spline Algorithms to the solution of Coupled Burgers' Equation, AIP Conf. Proc., 2018, 1926, 020044. doi. org/10.1063/1.5020493 doi: 10.1063/1.5020493

    CrossRef Google Scholar

    [24] B. Saka and İ. Dağ, Quartic B-spline collocation method to the numerical solutions of the Burgers' equation, Chaos Solitons Fractals, 2007, 32, 1125–1137. doi: 10.1016/j.chaos.2005.11.037

    CrossRef Google Scholar

    [25] B. Saka and İ. Dağ, A numerical study of the Burgers' equation, J. Franklin Inst., 2008, 345, 328–348. doi: 10.1016/j.jfranklin.2007.10.004

    CrossRef Google Scholar

    [26] M. Seydaoğlu, U. Erdoğan and T. Öziş, Numerical solution of Burgers' equation with high order splitting methods, J. Comput. Appl. Math., 2016, 291, 410–421. doi: 10.1016/j.cam.2015.04.021

    CrossRef Google Scholar

    [27] G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 1968, 5, 506–517. doi: 10.1137/0705041

    CrossRef Google Scholar

    [28] H. F. Trotter, On the product of semi-groups of operators, Proc. American Math. Society, 1959, 10, 545–551. doi: 10.1090/S0002-9939-1959-0108732-6

    CrossRef Google Scholar

    [29] Y. Uçar, N. M. Yağmurlu and İ. Çelikkaya, Numerical Solution of Burger's Type Equation Using Finite Element Collocation Method with Strang Splitting, M. S. A. E. N., 2020, 8(1), 29–45. DOI. ORG/10.36753/MATHENOT. 598635

    Google Scholar

    [30] G. Walz, Identities for trigonometric B-splines with an application to curve design, BIT, 1997, 37, 189–201. doi: 10.1007/BF02510180

    CrossRef Google Scholar

Figures(3)  /  Tables(9)

Article Metrics

Article views(2790) PDF downloads(586) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint