Citation: | Zhi-Gang Wang, Muhammad Arif, Zhi-Hong Liu, Saira Zainab, Rabia Fayyaz, Muhammad Ihsan, Meshal Shutaywi. SHARP BOUNDS ON HANKEL DETERMINANTS FOR CERTAIN SUBCLASS OF STARLIKE FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 860-873. doi: 10.11948/20220180 |
The main objective of this paper is to study coefficient problems for starlike functions located in the petal shaped domain. The bounds of the first three initial coefficients, bounds of Fekete-Szegö type inequality, estimates of the second and third Hankel determinants for the subclass of starlike functions are derived, all of these bounds are sharp.
[1] | A. Abdullah, M. Arif, M. A. Alghamdi and S. Hussain, Starlikness associated with cosine hyperbolic function, Mathematics, 2020, 8, Art. 1118. doi: 10.3390/math8071118 |
[2] | M. Arif, S. Umar, M. Raza, T. Bulboacǎ, M. U. Farooq and H. Khan, On fourth Hankel determinant for functions associated with Bernoulli's lemniscate, Hacet. J. Math. Stat., 2020, 49, 1777–1787. |
[3] | K. Arora and S. S. Kumar, Starlike functions associated with a petal shaped domain, Bull. Korean Math. Soc., 2022, 59, 993–1010. |
[4] | K. O. Babalola, On $H_3(1)$ Hankel determinant for some classes of univalent functions, Inequality Theory and Applications, editors: Y. J. Cho, J. K. Kim and S. S. Dragomir, 2010, 6, 1–7. |
[5] | K. Bano and M. Raza, Starlike functions associated with cosine functions, Bull. Iranian Math. Soc., 2021, 47, 1513–1532. doi: 10.1007/s41980-020-00456-9 |
[6] | L. Bieberbach, Über dié koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, Sitzungsberichte Preussische Akademie der Wissenschaften, 1916, 138, 940–955. |
[7] | N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko and Y. J. Sim, Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha, J. Math. Inequal., 2017, 11, 429–439. |
[8] | N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko and Y. J. Sim, The bounds of some determinants for starlike functions of order alpha, Bull. Malays. Math. Sci. Soc., 2018, 41, 523–535. doi: 10.1007/s40840-017-0476-x |
[9] | N. E. Cho, V. Kumar, S. S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc., 2019, 45, 213–232. doi: 10.1007/s41980-018-0127-5 |
[10] | L. de-Branges, A proof of the Bieberbach conjecture, Acta Math., 1985, 154, 137–152. doi: 10.1007/BF02392821 |
[11] | W. K. Hayman, On the second Hankel determinant of mean univalent functions, Proc. London Math. Soc., 1968, 18(3), 77–94. |
[12] | W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math., 1970/1971, 23, 159–177. doi: 10.4064/ap-23-2-159-177 |
[13] | A. Janteng, S. A. Halim and M. Darus, Coefficient inequality for a function whose derivative has a positive real part, JIPAM. J. Inequal. Pure Appl. Math., 2006, 7, Art. 50, 5 pp. |
[14] | A. Janteng, S. A. Halim and M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal. (Ruse), 2007, 1, 619–625. |
[15] | F. Keough and E. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 1969, 20, 8–12. doi: 10.1090/S0002-9939-1969-0232926-9 |
[16] | B. Kowalczyk, A. Lecko and Y. J. Sim, The sharp bound for the Hankel determinant of the third kind for convex functions, Bull. Aust. Math. Soc., 2018, 97, 435–445. doi: 10.1017/S0004972717001125 |
[17] | S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math., 2016, 40, 199–212. |
[18] | O. S. Kwon, A. Lecko and Y. J. Sim, On the fourth coefficient of functions in the CarathšŠodory class, Comput. Methods Funct. Theory, 2018, 18, 307–314. doi: 10.1007/s40315-017-0229-8 |
[19] | O. S. Kwon, A. Lecko and Y. J. Sim, The bound of the Hankel determinant of the third kind for starlike functions, Bull. Malays. Math. Sci. Soc., 2019, 42, 767–780. doi: 10.1007/s40840-018-0683-0 |
[20] | A. Lecko, Y. J. Sim and B. Śmiarowska, The sharp bound of the Hankel determinant of the third kind for starlike functions of order $1/2$, Complex Anal. Oper. Theory, 2019, 13, 2231–2238. doi: 10.1007/s11785-018-0819-0 |
[21] | S. K. Lee, V. Ravichandra and S. Supramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl., 2013, 2013, Art. 281, 17 pp. |
[22] | R. J. Libera and E. J. Złotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 1982, 85, 225–230. doi: 10.1090/S0002-9939-1982-0652447-5 |
[23] | R. J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in ${\mathcal P}$, Proc. Amer. Math. Soc., 1983, 87, 251–257. |
[24] | W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1994. |
[25] | R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., 2015, 38, 365–386. doi: 10.1007/s40840-014-0026-8 |
[26] |
M. Obradović and N. Tuneski, Hankel determinants of second and third order for the class $\mathcal{S}$ of univalent functions, Math. Slovaca, 2021, 71, 649–654. doi: 10.1515/ms-2021-0010
CrossRef $\mathcal{S}$ of univalent functions" target="_blank">Google Scholar |
[27] | C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc., 1966, 41, 111–122. |
[28] | C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika, 1967, 14, 108–112. doi: 10.1112/S002557930000807X |
[29] | C. Pommerenke, Univalent functions. Studia Mathematica/Mathematische Lehrbš¹cher, Band XXV. Vandenhoeck & Ruprecht, Göttingen, 1975, 376 pp. |
[30] | B. Rath, K. S. Kumar, D. V. Krishna and A. Lecko, The sharp bound of the third Hankel determinant for starlike functions of order $1/2$, Complex Anal. Oper. Theory, 2022, 16, Paper No. 65, 8 pp. |
[31] | K. Sharma, N. K. Jain and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat., 2016, 27, 923–939. doi: 10.1007/s13370-015-0387-7 |
[32] | L. Shi, H. M. Srivastava, M. Arif, S. Hussain and H. Khan, An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function, Symmetry, 2019, 11, Art. 598. doi: 10.3390/sym11050598 |
[33] | L. Shi, M. Shutaywi, N. Alreshidi, M. Arif and S. M. Ghufran, The sharp bounds of the third-order Hankel determinant for certain analytic functions associated with an eight-shaped domain, Fractal Fract., 2022, 6, Art. 223. doi: 10.3390/fractalfract6040223 |
[34] | L. Shi, Z. Wang, R. Su and M. Arif, Initial successive coefficients for certain classes of univalent functions involving the exponential function, J. Math. Inequal., 2020, 14, 1183–1201. |
[35] | J. Sokół and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 1996, 19, 101–105. |
[36] |
H. M. Srivastava, B. Khan, N. Khan and Q. Z. Ahmad, Coefficient inequalities for $q$-starlike functions associated with the Janowski functions, Hokkaido Math. J., 2019, 48, 407–425.
$q$-starlike functions associated with the Janowski functions" target="_blank">Google Scholar |
[37] |
H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad and N. Khan, Some general families of $q$-starlike functions associated with the Janowski functions, Filomat, 2019, 33, 2613–2626. doi: 10.2298/FIL1909613S
CrossRef $q$-starlike functions associated with the Janowski functions" target="_blank">Google Scholar |
[38] | Z. Wang, M. Raza, M. Arif and K. Ahmad, On the third and fourth Hankel determinants of a subclass of analytic functions, Bull. Malays. Math. Sci. Soc., 2022, 45, 323–359. doi: 10.1007/s40840-021-01195-8 |
[39] | X. Wang, Z. Wang, J. Fan and Z. Hu, Some properties of certain close-to-convex harmonic mappings, Anal. Math. Phys., 2022, 12, Paper No. 28, 21 pp. |
[40] | P. Zaprawa, M. Obradović and N. Tuneski, Third Hankel determinant for univalent starlike functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 2021, 115, Paper No. 49, 6 pp. |
[41] | P. Zaprawa, Third Hankel determinants for subclasses of univalent functions, Mediterr. J. Math., 2017, 14, Paper No. 19, 10 pp. |