2023 Volume 13 Issue 2
Article Contents

Zhi-Gang Wang, Muhammad Arif, Zhi-Hong Liu, Saira Zainab, Rabia Fayyaz, Muhammad Ihsan, Meshal Shutaywi. SHARP BOUNDS ON HANKEL DETERMINANTS FOR CERTAIN SUBCLASS OF STARLIKE FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 860-873. doi: 10.11948/20220180
Citation: Zhi-Gang Wang, Muhammad Arif, Zhi-Hong Liu, Saira Zainab, Rabia Fayyaz, Muhammad Ihsan, Meshal Shutaywi. SHARP BOUNDS ON HANKEL DETERMINANTS FOR CERTAIN SUBCLASS OF STARLIKE FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 860-873. doi: 10.11948/20220180

SHARP BOUNDS ON HANKEL DETERMINANTS FOR CERTAIN SUBCLASS OF STARLIKE FUNCTIONS

  • Corresponding author: Email: liuzhihongmath@163.com (Z.-H. Liu) 
  • Fund Project: The present investigation was supported by the National Natural Science Foundation (No. 11961013), the Natural Science Foundation of Hunan Province (No. 2022JJ30185), and the Key Project of Education Department of Hunan Province (No. 19A097)
  • The main objective of this paper is to study coefficient problems for starlike functions located in the petal shaped domain. The bounds of the first three initial coefficients, bounds of Fekete-Szegö type inequality, estimates of the second and third Hankel determinants for the subclass of starlike functions are derived, all of these bounds are sharp.

    MSC: 30C45, 30C50
  • 加载中
  • [1] A. Abdullah, M. Arif, M. A. Alghamdi and S. Hussain, Starlikness associated with cosine hyperbolic function, Mathematics, 2020, 8, Art. 1118. doi: 10.3390/math8071118

    CrossRef Google Scholar

    [2] M. Arif, S. Umar, M. Raza, T. Bulboacǎ, M. U. Farooq and H. Khan, On fourth Hankel determinant for functions associated with Bernoulli's lemniscate, Hacet. J. Math. Stat., 2020, 49, 1777–1787.

    Google Scholar

    [3] K. Arora and S. S. Kumar, Starlike functions associated with a petal shaped domain, Bull. Korean Math. Soc., 2022, 59, 993–1010.

    Google Scholar

    [4] K. O. Babalola, On $H_3(1)$ Hankel determinant for some classes of univalent functions, Inequality Theory and Applications, editors: Y. J. Cho, J. K. Kim and S. S. Dragomir, 2010, 6, 1–7.

    Google Scholar

    [5] K. Bano and M. Raza, Starlike functions associated with cosine functions, Bull. Iranian Math. Soc., 2021, 47, 1513–1532. doi: 10.1007/s41980-020-00456-9

    CrossRef Google Scholar

    [6] L. Bieberbach, Über dié koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, Sitzungsberichte Preussische Akademie der Wissenschaften, 1916, 138, 940–955.

    Google Scholar

    [7] N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko and Y. J. Sim, Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha, J. Math. Inequal., 2017, 11, 429–439.

    Google Scholar

    [8] N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko and Y. J. Sim, The bounds of some determinants for starlike functions of order alpha, Bull. Malays. Math. Sci. Soc., 2018, 41, 523–535. doi: 10.1007/s40840-017-0476-x

    CrossRef Google Scholar

    [9] N. E. Cho, V. Kumar, S. S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc., 2019, 45, 213–232. doi: 10.1007/s41980-018-0127-5

    CrossRef Google Scholar

    [10] L. de-Branges, A proof of the Bieberbach conjecture, Acta Math., 1985, 154, 137–152. doi: 10.1007/BF02392821

    CrossRef Google Scholar

    [11] W. K. Hayman, On the second Hankel determinant of mean univalent functions, Proc. London Math. Soc., 1968, 18(3), 77–94.

    Google Scholar

    [12] W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math., 1970/1971, 23, 159–177. doi: 10.4064/ap-23-2-159-177

    CrossRef Google Scholar

    [13] A. Janteng, S. A. Halim and M. Darus, Coefficient inequality for a function whose derivative has a positive real part, JIPAM. J. Inequal. Pure Appl. Math., 2006, 7, Art. 50, 5 pp.

    Google Scholar

    [14] A. Janteng, S. A. Halim and M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal. (Ruse), 2007, 1, 619–625.

    Google Scholar

    [15] F. Keough and E. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 1969, 20, 8–12. doi: 10.1090/S0002-9939-1969-0232926-9

    CrossRef Google Scholar

    [16] B. Kowalczyk, A. Lecko and Y. J. Sim, The sharp bound for the Hankel determinant of the third kind for convex functions, Bull. Aust. Math. Soc., 2018, 97, 435–445. doi: 10.1017/S0004972717001125

    CrossRef Google Scholar

    [17] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math., 2016, 40, 199–212.

    Google Scholar

    [18] O. S. Kwon, A. Lecko and Y. J. Sim, On the fourth coefficient of functions in the CarathšŠodory class, Comput. Methods Funct. Theory, 2018, 18, 307–314. doi: 10.1007/s40315-017-0229-8

    CrossRef Google Scholar

    [19] O. S. Kwon, A. Lecko and Y. J. Sim, The bound of the Hankel determinant of the third kind for starlike functions, Bull. Malays. Math. Sci. Soc., 2019, 42, 767–780. doi: 10.1007/s40840-018-0683-0

    CrossRef Google Scholar

    [20] A. Lecko, Y. J. Sim and B. Śmiarowska, The sharp bound of the Hankel determinant of the third kind for starlike functions of order $1/2$, Complex Anal. Oper. Theory, 2019, 13, 2231–2238. doi: 10.1007/s11785-018-0819-0

    CrossRef $1/2$" target="_blank">Google Scholar

    [21] S. K. Lee, V. Ravichandra and S. Supramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl., 2013, 2013, Art. 281, 17 pp.

    Google Scholar

    [22] R. J. Libera and E. J. Złotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 1982, 85, 225–230. doi: 10.1090/S0002-9939-1982-0652447-5

    CrossRef Google Scholar

    [23] R. J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in ${\mathcal P}$, Proc. Amer. Math. Soc., 1983, 87, 251–257.

    ${\mathcal P}$" target="_blank">Google Scholar

    [24] W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1994.

    Google Scholar

    [25] R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., 2015, 38, 365–386. doi: 10.1007/s40840-014-0026-8

    CrossRef Google Scholar

    [26] M. Obradović and N. Tuneski, Hankel determinants of second and third order for the class $\mathcal{S}$ of univalent functions, Math. Slovaca, 2021, 71, 649–654. doi: 10.1515/ms-2021-0010

    CrossRef $\mathcal{S}$ of univalent functions" target="_blank">Google Scholar

    [27] C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc., 1966, 41, 111–122.

    Google Scholar

    [28] C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika, 1967, 14, 108–112. doi: 10.1112/S002557930000807X

    CrossRef Google Scholar

    [29] C. Pommerenke, Univalent functions. Studia Mathematica/Mathematische Lehrbš¹cher, Band XXV. Vandenhoeck & Ruprecht, Göttingen, 1975, 376 pp.

    Google Scholar

    [30] B. Rath, K. S. Kumar, D. V. Krishna and A. Lecko, The sharp bound of the third Hankel determinant for starlike functions of order $1/2$, Complex Anal. Oper. Theory, 2022, 16, Paper No. 65, 8 pp.

    Google Scholar

    [31] K. Sharma, N. K. Jain and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat., 2016, 27, 923–939. doi: 10.1007/s13370-015-0387-7

    CrossRef Google Scholar

    [32] L. Shi, H. M. Srivastava, M. Arif, S. Hussain and H. Khan, An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function, Symmetry, 2019, 11, Art. 598. doi: 10.3390/sym11050598

    CrossRef Google Scholar

    [33] L. Shi, M. Shutaywi, N. Alreshidi, M. Arif and S. M. Ghufran, The sharp bounds of the third-order Hankel determinant for certain analytic functions associated with an eight-shaped domain, Fractal Fract., 2022, 6, Art. 223. doi: 10.3390/fractalfract6040223

    CrossRef Google Scholar

    [34] L. Shi, Z. Wang, R. Su and M. Arif, Initial successive coefficients for certain classes of univalent functions involving the exponential function, J. Math. Inequal., 2020, 14, 1183–1201.

    Google Scholar

    [35] J. Sokół and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 1996, 19, 101–105.

    Google Scholar

    [36] H. M. Srivastava, B. Khan, N. Khan and Q. Z. Ahmad, Coefficient inequalities for $q$-starlike functions associated with the Janowski functions, Hokkaido Math. J., 2019, 48, 407–425.

    $q$-starlike functions associated with the Janowski functions" target="_blank">Google Scholar

    [37] H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad and N. Khan, Some general families of $q$-starlike functions associated with the Janowski functions, Filomat, 2019, 33, 2613–2626. doi: 10.2298/FIL1909613S

    CrossRef $q$-starlike functions associated with the Janowski functions" target="_blank">Google Scholar

    [38] Z. Wang, M. Raza, M. Arif and K. Ahmad, On the third and fourth Hankel determinants of a subclass of analytic functions, Bull. Malays. Math. Sci. Soc., 2022, 45, 323–359. doi: 10.1007/s40840-021-01195-8

    CrossRef Google Scholar

    [39] X. Wang, Z. Wang, J. Fan and Z. Hu, Some properties of certain close-to-convex harmonic mappings, Anal. Math. Phys., 2022, 12, Paper No. 28, 21 pp.

    Google Scholar

    [40] P. Zaprawa, M. Obradović and N. Tuneski, Third Hankel determinant for univalent starlike functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 2021, 115, Paper No. 49, 6 pp.

    Google Scholar

    [41] P. Zaprawa, Third Hankel determinants for subclasses of univalent functions, Mediterr. J. Math., 2017, 14, Paper No. 19, 10 pp.

    Google Scholar

Article Metrics

Article views(2519) PDF downloads(819) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint