Citation: | Mei Wei, Yongxiang Li. EXISTENCE AND GLOBAL ASYMPTOTIC BEHAVIOR OF MILD SOLUTIONS FOR DAMPED ELASTIC SYSTEMS WITH DELAY AND NONLOCAL CONDITIONS[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 874-892. doi: 10.11948/20220189 |
In this paper, we are devoted to the study of a class of structural damped elastic systems with delay and nonlocal conditions in Banach space. Firstly, in the sense of compact semigroup, the existence of mild solutions is studied, where the nonlinearity $ f $ and nonlocal function $ g $ satisfy more general growth conditions rather than Lipschitz-type conditions. Secondly, based on a new Gronwall-Bellman type integral inequality with delay, the global asymptotic stability of the mild solution is discussed. At the end, a concrete example of nonlocal damped beam vibration equation is given to illustrate the feasibility and practical application value of our abstract results.
[1] | L. Byszewski and V. Lakshmikantham, Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal., 1991, 40(1), 11-19. doi: 10.1080/00036819008839989 |
[2] | L. Byszewski, Existence and uniqueness of a classical solution to a functional-differential abstract nonlocal Cauchy problem, J. Appl. Math. Stochastic Anal., 1999, 12(1), 91-97. doi: 10.1155/S1048953399000088 |
[3] | A. Boucherif, Semilinear evolution inclusions with nonlocal conditions, Appl. Math. Lett., 2009, 22(8), 1145-1149. doi: 10.1016/j.aml.2008.10.004 |
[4] | G. Chen and D. L. Russell, A mathematical model for linear elastic systems with structural damping, Quart. Appl. Math., 1982, 39(4), 433-454. doi: 10.1090/qam/644099 |
[5] | X. Chen and J. Guo, Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations, J. Diff. Eqs., 2002, 184(2), 549-569. doi: 10.1006/jdeq.2001.4153 |
[6] | A. Caicedo, C. Cuevas, G. Mophou and G. N'Gu${\acute{e}}$r${\acute{e}}$kata, Asymptotic behavior of solutions of some semilinear functional differential and integro-differential equations with infinite delay in Banach spaces, J. Franklin Inst., 2012, 349(1), 1-24. doi: 10.1016/j.jfranklin.2011.02.001 |
[7] | P. Chen, A. Abdelmonem and Y. Li, Global existence and asymptotic stability of mild solutions for stochastic evolution equations with nonlocal initial conditions, J. Integral Equations Appl., 2017, 29(2), 325-348. |
[8] | P. Chen, R. Wang and X. Zhang, Long-time dynamics of fractional nonclassical diffusion equations with nonlinear colored noise and delay on unbounded domains, Bull. Sci. Math., 2021, 173(2021), 103071, 52pp. |
[9] | K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl., 1993, 179(2), 630-637. doi: 10.1006/jmaa.1993.1373 |
[10] | T. Diagana, Well-posedness for some damped elastic systems in Banach spaces, Appl. Math. Lett., 2017, 71(2017), 74-80. |
[11] | K. J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000. |
[12] | H. Fan and Y. Li, Monotone iterative technique for the elastic systems with structural damping in Banach spaces, Comput. Math. Appl., 2014, 68(3), 384-391. doi: 10.1016/j.camwa.2014.06.009 |
[13] | H. Fan and Y. Li, Analyticity and exponential stability of semigroups for the elastic systems with structural damping in Banach spaces, J. Math. Anal. Appl., 2014, 410(1), 316-322. doi: 10.1016/j.jmaa.2013.08.028 |
[14] | H. Fan and F. Gao, Asymptotic stability of solutions to elastic systems with structural damping, Electron. J. Diff. Eqs., 2014, 2014(245), 9pp. |
[15] | H. Gou and Y. Li, A Study on Damped Elastic Systems in Banach Spaces, Numer. Func. Anal. Opt., 2020, 41(5), 542-570. doi: 10.1080/01630563.2019.1664567 |
[16] | H. Gou and Y. Li, Mixed monotone iterative technique for damped elastic systems in Banach spaces, J. Pseudo-Diff. Oper. Appl., 2020, 11(2), 917-933. doi: 10.1007/s11868-019-00296-0 |
[17] | D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., Springer-Verlag, New York, 1981. |
[18] | F. Huang, On the holomorphic property of the semigroup associated with linear elastic systems with structural damping, Acta Math. Sci. (Chinese), 1985, 5(3), 271-277. doi: 10.1016/S0252-9602(18)30548-4 |
[19] | F. Huang and K. Liu, Holomiphic property and exponential stability of the semigroup associated with linear elastic systems with damping, Ann. Diff. Eqs., 1988, 4(4), 411-424. |
[20] | F. Huang, Y. Huang and F. Guo, Analyticity and differentiability of the $C_0$-semigroup associated with Euler-Bernoulli beam equations with structural damping, Sinica Math. Sci. (Chinese), 1992, 2, 122-133. |
[21] | E. M. Hern$\acute{a} $ndez and S. M. Tanaka, Global solutions for abstract functional differential equations with nonlocal conditions, Electron. J. Qual. Theory Diff. Equ., 2009, 2009(50), 8pp. |
[22] | K. Liu and Z. Liu, Analyticity and Differentiability of Semigroups Associated with Elastic Systems with Damping and Gyroscopic Forces, J. Diff. Eqs., 1997, 141(2), 340-355. doi: 10.1006/jdeq.1997.3331 |
[23] | Y. Li, The positive solutions of abstract semilinear evolution equations and their applications, Acta Math. Sin. (Chinese), 1996, 39(5), 666-672. |
[24] | Y. Li, The global solutions of initial value problems for abstract semilinear evolution equations, Acta Anal. Funct. Appl. (Chinese), 2001, 3(4), 339-347. |
[25] | Y. Li, Existence of solutions of initial value problems for a bstract semilinear evolution equations, Acta. Math. Sin. (Chinese), 2005, 48(6), 1089-1094. |
[26] | Y. Li, Existence and asymptotic stability of periodic solution for evolution equations with delays, J. Funct. Anal., 2011, 261(5), 1309-1324. doi: 10.1016/j.jfa.2011.05.001 |
[27] | D. Li and Y. Wang, Asymptotic behavior of gradient systems with small time delays, Nonlinear Anal. : Real World Appl., 2010, 11(3), 1627-1633. doi: 10.1016/j.nonrwa.2009.03.015 |
[28] | F. Li and H. Wang, $S-$asymptotically $w-$periodic mild solutions of neutral fractional differential equations with finite delay in Banach space, Mediterr. J. Math., 2017, 14(2), 16pp. |
[29] | V. T. Luong and N. T. Tung, Decay mild solutions for elastic systems with structural damping involving nonlocal conditions, Vestnik St. Petersburg Univer. Math., 2017, 50(1), 55-67. doi: 10.3103/S1063454117010083 |
[30] | V. T. Luong and N. T. Tung, Exponential decay for elastic systems with structural damping and infinite delay, Appl. Anal., 2020, 99(1), 13-28. doi: 10.1080/00036811.2018.1484907 |
[31] | Q. Li and M. Wei, Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay, Evol. Equ. Control Theory, 2020, 9(3), 753-772. doi: 10.3934/eect.2020032 |
[32] | Q. Li, L. Liu and M. Wei, Existence of positive S-asymptotically periodic solutions of the fractional evolution equations in ordered Banach spaces, Nonlinear Anal. : Modelling and Control, 2021, 26(5), 928-946. doi: 10.15388/namc.2021.26.24176 |
[33] | A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. |
[34] | P. Rubbioni, Asymptotic stability of solutions for some classes of impulsive differential equations with distributed delay, Nonlinear Anal. : Real World Appl., 2021, 61, 103324, 17pp. |
[35] | R. Triggiani, On the stabilizability problem in Banach space, J. Math. Anal. Appl., 1975, 52(3), 383-403. doi: 10.1016/0022-247X(75)90067-0 |
[36] | Z. Wang, Y. Liu and X. Liu, On global asymptotic stability of neural networks with discrete and distributed delays, Phys. Lett. A, 2005, 345, 299-308. doi: 10.1016/j.physleta.2005.07.025 |
[37] | S. Wei, Global existence of mild solutions for the elastic system with structural damping, Ann. Appl. Math., 2019, 35(2), 180-188. |
[38] | T. Xiao and J. Liang, Existence of classical solutions to nonautonomous nonlocal parabolic problems, Nonlinear Anal. : Theory Methods Appl., 2005, 63(5-7), e225-e232. doi: 10.1016/j.na.2005.02.067 |
[39] | X. Xue, Nonlocal nonlinear differential equations with a measure of noncompactness in Banach spaces, Nonlinear Anal. : Theory Methods Appl., 2009, 70(7), 2593-2601. doi: 10.1016/j.na.2008.03.046 |