2023 Volume 13 Issue 1
Article Contents

Qiyuan Meng, Xiaoling Hao, Kun Li. FRACTIONAL DISSIPATIVE STURM-LIOUVILLE PROBLEMS WITH DISCONTINUITY AND EIGEN-DEPENDENT BOUNDARY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 445-457. doi: 10.11948/20220248
Citation: Qiyuan Meng, Xiaoling Hao, Kun Li. FRACTIONAL DISSIPATIVE STURM-LIOUVILLE PROBLEMS WITH DISCONTINUITY AND EIGEN-DEPENDENT BOUNDARY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 445-457. doi: 10.11948/20220248

FRACTIONAL DISSIPATIVE STURM-LIOUVILLE PROBLEMS WITH DISCONTINUITY AND EIGEN-DEPENDENT BOUNDARY CONDITIONS

  • This paper studies two main fractional discontinuous dissipative Sturm-Liouville type boundary-value problems with boundary conditions and transmission conditions. In both types of research, with the aid of the operator theory, we define different classes of new inner products by combining the parameters in the boundary and transmission conditions, then the boundary value problems are transferred to operators in the Hilbert spaces such that the eigenvalues and eigenfunctions of the main problem coincide with those of operators. And we prove those of operators are dissipative. Moreover, the fundamental solutions are constructed and the uniqueness of the solutions of the problem is also given.

    MSC: 34B24, 34L20, 34L05
  • 加载中
  • [1] Z. Akdoğan, M. Demirci and O. Sh. Mukhtarov, Discontinuous Sturm-Liouville problem with eigen parameter-dependent boundary and transmission conditions, Acta Applicandae Mathematica, 2005, 86, 329–344. doi: 10.1007/s10440-004-7466-3

    CrossRef Google Scholar

    [2] Z. Akdoğan, M. Demirci and O. Sh. Mukhtarov, Sturm-Liouville problem with eigen dependent boundary and transmissions conditions, Acta Mathematica Scientia, 2005, 25B(4), 731–740.

    Google Scholar

    [3] K. Aydemir1 and O. Sh. Mukhtarov, Variational principles for spectral analysis of one Sturm-Liouville problem with transmission conditions, Advances in Difference Equations, 2016, 2016, 1–14.

    Google Scholar

    [4] Q. M. Al-Mdallal, On the numerical solution of fractional Sturm-Liouville problem, International Journal Computer Mathematics, 2010, 87(12), 2837–2845. doi: 10.1080/00207160802562549

    CrossRef Google Scholar

    [5] Z. Akdoğan, A. Yakar and M. Demirci, Discontinuous fractional Sturm-Liouville problems with transmission conditions, Applied Mathematics and Computation, 2019, 350, 1–10.

    Google Scholar

    [6] D. Baleanu and E. Uğurlu, Regular fractional dissipative boundary value problems, Advances in Difference Equation, 2016, 2016(1), 1–6. doi: 10.1186/s13662-015-0739-5

    CrossRef Google Scholar

    [7] M. Dehghan and A. Mingarelli, Fractional Sturm-Liouville eigenvalue problems, I, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales-Serie A. Matemáticas, 2020, 114(2), 1–15.

    Google Scholar

    [8] W. Everitt and M. Marletta, Inequalities and eigenvalues of Sturm-Liouville problems near a singular boundary, Journal of inequalites and applications, 2001, 6, 405–413. doi: 10.1155/S1025583401000248

    CrossRef Google Scholar

    [9] C. T. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 1977, 77A, 293–308.

    Google Scholar

    [10] A. Fernandez and C. Ustaoğlu, On some analytic properties of tempered fractional calculus, Journal of Computational and Applied Mathematics, 2020, 366, 1–14.

    Google Scholar

    [11] J. Fu, X. Hao, K. Li and S. Yao, Discontinuous fractional Sturm-Liouville problems with eigen-dependent boundary conditions, Journal of Applied Analysis and Computation, 2021, 11(4), 2037–2051. doi: 10.11948/20200308

    CrossRef Google Scholar

    [12] G. J. Kynch, Book Review: Linear Differential Operators–Part 1: M. A. Naimark, The International Journal of Electrical Engineering Education, 1970, 8, 165.

    Google Scholar

    [13] A. A. Kilbass, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006.

    Google Scholar

    [14] H. C. Kaiser, H. Neidhardt and J. Rehberg, On 1-dimensional dissipative Schrödinger-type operators their dilations and eigenfunction expansions, Mathematische Nachrichten, 2003, 252(1), 51–69. doi: 10.1002/mana.200310037

    CrossRef Google Scholar

    [15] J. Li and J. Qi, Note on a nonlocal Sturm-Liouville problem with both right and left fractional derivatives, Applied Mathematics Letters, 2019, 97, 14–19. doi: 10.1016/j.aml.2019.05.011

    CrossRef Google Scholar

    [16] J. Li and J. Qi, Eigenvalue problems for fractional differential equations with right and left fractional derivatives, Applied Mathematics and Computation, 2015, 256, 1–10. doi: 10.1016/j.amc.2014.12.146

    CrossRef Google Scholar

    [17] O. Sh. Mukhtarov, Discontinuous boundary-value problem with spectral parameter in boundary conditions, Turkish Journal of Mathematics, 1994, 18, 183–192.

    Google Scholar

    [18] O. Sh. Mukhtarov and K. Aydemir, Minimization principle and generalized Fourier series for discontinuous Sturm-Liouville systems in direct sum spaces, Journal of Applied Analysis and Computation, 2018, 8(5), 1511–1523. doi: 10.11948/2018.1511

    CrossRef Google Scholar

    [19] O. Sh. Mukhtarov and K. Aydemir, Eigenfunction expansion for Sturm-Liouville problems with transmission conditions at one interior point, Acta Mathematica Scientia, 2015, 35(3), 639–649. doi: 10.1016/S0252-9602(15)30010-2

    CrossRef Google Scholar

    [20] M. A. Naimark, Linear Differential Operators Part II: Linear Differential Operators in Hilbert Space, Frederick Ungar Publishing Company, 1968.

    Google Scholar

    [21] H. Olğar and O. Sh. Mukhtarov, Weak eigenfunctions of two-interval Sturm-Liouville problems together with interaction conditions, Journal of Mathematical Physics, 2017, 58(4), 042201. doi: 10.1063/1.4979615

    CrossRef Google Scholar

    [22] O. Ozturk, A study of ∇-discrete fractional calculus operator on the radial Schrödinger equation for some physical potentials, Questiones Mathematicae, 2017, 40(7), 879–889. doi: 10.2989/16073606.2017.1334157

    CrossRef Google Scholar

    [23] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

    Google Scholar

    [24] J. Qi and S. Chen, Eigenvalue problems of the model from nonlocal continuum mechanics, Journal of Mathematical Physics, 2011, 52(7), 537–546.

    Google Scholar

    [25] M. Rivero, J. Trujillo and M. Velasco, A fractional approach to the Sturm-Liouville problem, Open Physics, 2013, 11(10), 1246–1254.

    Google Scholar

    [26] A. Yakar and Z. Akdoğan, On the fundamental solutions of a discontinuous fractional boundary value problem, Advances in Difference Equations, 2017, 2017(1), 1–15. doi: 10.1186/s13662-016-1057-2

    CrossRef Google Scholar

    [27] A. Zettl, Sturm-Liouville Theory, Mathematical Surveys and Monographs, American Mathematical Society, 2005.

    Google Scholar

    [28] M. Zhang, J. Sun and A. Zettl, The specturm of singular Sturm-Liouville problems with eigenparameter dependent boundary conditions and its approximation, Results in Mathematics, 2013, 63(3), 1311–1330.

    Google Scholar

    [29] M. Zayernouri and G. E. Karniadakis, Fractional Sturm-Liouville eigen-problems: theory and numerical approximation, Journal of Computational Physics, 2013, 252, 495–517. doi: 10.1016/j.jcp.2013.06.031

    CrossRef Google Scholar

Article Metrics

Article views(1911) PDF downloads(435) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint