2023 Volume 13 Issue 4
Article Contents

Xin Li, Fazhan Geng. BOUNDARY LAYER-PRESERVING METHODS FOR A CLASS OF NONLINEAR SINGULAR PERTURBATION BOUNDARY VALUE PROBLEMS[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 1972-1982. doi: 10.11948/20220310
Citation: Xin Li, Fazhan Geng. BOUNDARY LAYER-PRESERVING METHODS FOR A CLASS OF NONLINEAR SINGULAR PERTURBATION BOUNDARY VALUE PROBLEMS[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 1972-1982. doi: 10.11948/20220310

BOUNDARY LAYER-PRESERVING METHODS FOR A CLASS OF NONLINEAR SINGULAR PERTURBATION BOUNDARY VALUE PROBLEMS

  • Author Bio: Email: xinli@amss.ac.cn (X. Li)
  • Corresponding author: Email: fzg@cslg.edu.cn (F. Z. Geng)
  • Fund Project: The authors were supported by National Natural Science Foundation of China(Nos. 12101084, 11271100, 11671200), China Postdoctoral Science Foundation(No. 2019M651765) and Natural Science Foundation for the Youth of Jiangsu Province(No. BK20181030). The authors was also supported by Qing Lan Project of Jiangsu Province
  • The aim of this paper is to develop a new uniformly convergent numerical approach for nonlinear singularly perturbed boundary value problems (BVPs). The method combines the advantages of the variation-of-constants formula and the reproducing kernel function approximation. It can preserve the boundary layer structure of the solution to the considered singular perturbation problems. In addition, compared with some existing numerical techniques, the present method has no restriction on the choice of nodes. Three numerical experiments are implemented and the numerical results indicate our new technique is quite promising.

    MSC: 35A35, 35B30, 65N45
  • 加载中
  • [1] T. Allahviranloo and H. Sahihi, Reproducing kernel method to solve fractional delay differential equations, Appl. Math. Comput., 2021, 400, 126095.

    Google Scholar

    [2] O. Abu Arqub and B. Maayah, Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense, Chaos Solitons Fractals, 2019, 125, 163-170. doi: 10.1016/j.chaos.2019.05.025

    CrossRef Google Scholar

    [3] A. Alvandi and P. Paripour, The combined reproducing kernel method and Taylor series for handling nonlinear Volterra integro-differential equations with derivative type kernel, Appl. Math. Comput., 2019, 355, 151-160.

    Google Scholar

    [4] A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Solitons Fractals, 2018, 114, 478-482. doi: 10.1016/j.chaos.2018.07.032

    CrossRef Google Scholar

    [5] M. Al-Smadi and O. Abu Arqub, Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates, Appl. Math. Comput., 2019, 342, 280-294.

    Google Scholar

    [6] M. Cui and Y. Lin, Nonlinear numerical analysis in reproducing kernel space, Nova Science Pub Inc, Hauppauge, 2009.

    Google Scholar

    [7] F. Geng and M. Cui, Solving a nonlinear system of second order boundary value problems, J. Math. Anal. Appl., 2007, 327, 1167-1181. doi: 10.1016/j.jmaa.2006.05.011

    CrossRef Google Scholar

    [8] F. Geng and S. Qian, Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers, Appl. Math. Lett., 2013, 26, 998-1004. doi: 10.1016/j.aml.2013.05.006

    CrossRef Google Scholar

    [9] F. Geng and S. Qian, Modified reproducing kernel method for singularly perturbed boundary value problems with a delay, Appl. Math. Model., 2015, 39, 5592-5597. doi: 10.1016/j.apm.2015.01.021

    CrossRef Google Scholar

    [10] F. Geng and S. Qian, A new numerical method for singularly perturbed turning point problems with two boundary layers based on reproducing kernel method, Calcolo, 2017, 54, 515-526. doi: 10.1007/s10092-016-0196-x

    CrossRef Google Scholar

    [11] F. Geng, Numerical methods for solving Schröinger equations in complex reproducing kernel Hilbert spaces, Mathematical Sciences, 2020, 14, 293-299. doi: 10.1007/s40096-020-00337-6

    CrossRef Google Scholar

    [12] Y. Gao, X. Li and B. Wu, A continuous kernel functions method for mixed-type functional differential equations, Mathematical Sciences. DOI: 10.1007/s40096-021-00409-1.

    CrossRef Google Scholar

    [13] F. T. Isfahani, R. Mokhtari, G. B. Loghmani and M. Mohammadi, Numerical solution of some initial optimal control problems using the reproducing kernel Hilbert space technique, International Journal of Control, 2020, 93, 1345-1352. doi: 10.1080/00207179.2018.1506888

    CrossRef Google Scholar

    [14] W. Jiang, Z. Chen and N. Hu, Multi-scale orthogonal basis method for nonlinear fractional equations with fractional integral boundary value conditions, Appl. Math. Comput., 2020, 378, 125151.

    Google Scholar

    [15] A. Kaushik, V. Kumar and A. K. Vashishth, An efficient mixed asymptotic-numerical scheme for singularly perturbed convection diffusion problems, Appl. Math. Comput., 2012, 218, 8645-8658.

    Google Scholar

    [16] M. K. Kadalbajoo and P. Arora, B-spline collocation method for the singular-perturbation problem using artificial viscosity, Comput. Math. Appl., 2009, 57, 650-663.

    Google Scholar

    [17] M. K. Kadalbajoo and D. Kumar, Initial value technique for singularly perturbed two point boundary value problems using an exponentially fitted finite difference scheme, Comput. Math. Appl., 2009, 57, 1147-1156.

    Google Scholar

    [18] M. K. Kadalbajoo, P. Arora and V. Gupta, Collocation method using artificial viscosity for solving stiff singularly perturbed turning point problem having twin boundary layers, Comput. Math. Appl., 2011, 61, 1595-1607.

    Google Scholar

    [19] X. Li and B. Wu, Error estimation for the reproducing kernel method to solve linear boundary value problems, J. Comput. Appl. Math., 2013, 243, 10-15. doi: 10.1016/j.cam.2012.11.002

    CrossRef Google Scholar

    [20] P. Rai and K. K. Sharma, Numerical study of singularly perturbed differential-difference equation arising in the modeling of neuronal variability, Comput. Math. Appl., 2012, 63, 118-132.

    Google Scholar

    [21] P. Rai and K. K. Sharma, Numerical approximation for a class of singularly perturbed delay differential equations with boundary and interior layer(s), Numer. Algor, 2019. https://doi.org/10.1007/s11075-019-00815-6.

    Google Scholar

    [22] H. G. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer, 2008.

    Google Scholar

    [23] H. Sahihi, S. Abbasbandy and T. Allahviranloo, Computational method based on reproducing kernel for solving singularly perturbed differential-difference equations with a delay, Appl. Math. Comput., 2019, 361, 583-598.

    Google Scholar

    [24] G. I. Shishkin and L. P. Shishkina, Difference methods for singular perturbation problems, Taylor and Francis, 2009.

    Google Scholar

    [25] H. Sahihi, T. Allahviranloo and S. Abbasbandy, Solving system of second-order BVPs using a new algorithm based on reproducing kernel Hilbert space, Appl. Numer. Math., 2020, 151, 27-39.

    Google Scholar

    [26] H. Wendland, Scattered data approximation, Cambridge University Press, New York, 2004.

    Google Scholar

    [27] Y. Zhang, Y. Lin and Y. Shen, A new multiscale algorithm for solving second order boundary value problems, Appl. Numer. Math., 2020, 156, 528-541.

    Google Scholar

Figures(4)  /  Tables(2)

Article Metrics

Article views(1621) PDF downloads(543) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint