Citation: | Shuang Wang, Chunlian Liu. PERIODIC SOLUTIONS OF SUPERLINEAR PLANAR HAMILTONIAN SYSTEMS WITH INDEFINITE TERMS[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2542-2554. doi: 10.11948/20220426 |
Existence of infinitely many periodic solutions for a planar Hamiltonian system $ Jz'=\nabla_z H(t, z) $ is proved. We investigate the case in which $ \nabla_z H(t, z) $ satisfies a general superlinear condition at infinity via rotation numbers and $ x\frac{\partial H}{\partial x}(t, x, y) $ is an indefinite term. Our approach is based on the Poincaré-Birkhoff theorem and the spiral property of large amplitude solutions. Our results generalize the classical result in Jacobowitz [
[1] | A. Bahri and H. Berestycki, Forced vibrations of superquadratic Hamiltonian systems, Acta Math., 1984, 152, 143–197. doi: 10.1007/BF02392196 |
[2] | A. Boscaggin, Subharmonic solutions of planar Hamiltonian systems: a rotation number approach, Adv. Nonlinear Stud., 2011, 11, 77–103. doi: 10.1515/ans-2011-0104 |
[3] | A. Boscaggin, Periodic solutions to superlinear planar Hamiltonian systems, Portugal. Math., 2012, 69, 127–140. |
[4] | A. Boscaggin and G. Feltrin, Positive subharmonic solutions to nonlinear ODEs with indefinite weight, Commun. Contemp. Math., 2017. |
[5] | A. Boscaggin and F. Zanolin, Pairs of positive periodic solutions of second order nonlinear equations with indefinite weight, J. Differential Equations, 2012, 252, 2900–2921. doi: 10.1016/j.jde.2011.09.011 |
[6] | C. Coffman and D. Ullrich, On the continuation of solutions of a certain non-linear differential equation, Monatsh. Math., 1967, 71, 385–392. doi: 10.1007/BF01295129 |
[7] | F. Dalbono and F. Zanolin, Multiplicity results for asymptotically linear equations, using the rotation number approach, Mediterr. J. Math., 2007, 4, 127–149. doi: 10.1007/s00009-007-0108-z |
[8] | A. Fonda and A. Sfecci, Periodic solutions of weakly coupled superlinear systems, J. Differential Equations, 2016, 260, 2150–2162. doi: 10.1016/j.jde.2015.09.056 |
[9] | A. Fonda and A. Sfecci, Multiple periodic solutions of hamiltonian systems confined in a box, Discrete Contin. Dyn. Syst., 2017, 37, 1425–1436. doi: 10.3934/dcds.2017059 |
[10] | A. Fonda and A. J. Ureña, A higher dimensional Poincaré-Birkhoff theorem for Hamiltonian flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2017, 34, 679–698. doi: 10.1016/j.anihpc.2016.04.002 |
[11] | S. Gan and M. Zhang, Resonance pockets of Hill's equations with two-step potentials, SIAM J. Math. Anal., 2000, 32, 651–664. doi: 10.1137/S0036141099356842 |
[12] | P. Hartman, On boundary value problems for superlinear second order differential equations, J. Differential Equations, 1977, 26, 37–53. doi: 10.1016/0022-0396(77)90097-3 |
[13] | H. Jacobowitz, Periodic solutions of x"+f(t, x)=0 via the Poincaré-Birkhoff theorem, J. Differential Equations, 1976, 20, 37–52. doi: 10.1016/0022-0396(76)90094-2 |
[14] | C. Liu and S. Wang, Periodic solutions of indefinite planar systems with asymmetric nonlinearities via rotation numbers, Math. Meth. Appl. Sci., 2022. |
[15] | C. Liu, D. Qian and P. J. Torres, Non-resonance and double resonance for a planar system via rotation numbers, Results Math., 2021. |
[16] | Y. Long, Periodic solutions of perturbed superquadratic Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1990, 17, 35–77. |
[17] | A. Margheri, C. Rebelo and P. J. Torres, On the use of Morse index and rotation numbers for multiplicity results of resonant BVPs, J. Math. Anal. Appl., 2014, 413, 660–667. doi: 10.1016/j.jmaa.2013.12.005 |
[18] | D. Qian, P. J. Torres and P. Wang, Periodic solutions of second order equations via rotation numbers, J. Differential Equations, 2019, 266, 4746–4768. doi: 10.1016/j.jde.2018.10.010 |
[19] | S. Wang and D. Qian, Subharmonic solutions of indefinite Hamiltonian systems via rotation numbers, Adv. Nonlinear Stud., 2021, 21, 557–578. doi: 10.1515/ans-2021-2134 |
[20] | S. Wang and D. Qian, Periodic solutions of p-Laplacian equations via rotation numbers, Comm. Pure Appl. Anal., 2021, 20, 2117–2138. doi: 10.3934/cpaa.2021060 |
[21] | S. Wang, Periodic solutions of weakly coupled superlinear systems with indefinite terms, NoDEA Nonlinear Differ. Equ. Appl., 2022. |
[22] | C. Wang, D. Qian and Q. Liu, Impact oscillators of Hill's type with indefinite weight: periodic and chaotic dynamics, Discrete Contin. Dyna. Syst. A, 2016, 36, 2305–2328. |
[23] | C. Zanini, Rotation numbers, eigenvalues, and the Poincaré-Birkhoff theorem, J. Math. Anal. Appl., 2003, 279, 290–307. |
[24] | M. Zhang, The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials, J. London Math. Soc., 2001, 64, 125–143. |