Citation: | Xiaoping Chen, Chengdai Huang, Jinde Cao, Xueying Shi, An Luo. HOPF BIFURCATION IN THE DELAYED FRACTIONAL LESLIE-GOWER MODEL WITH HOLLING TYPE II FUNCTIONAL RESPONSE[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2555-2571. doi: 10.11948/20220451 |
In this paper the fractional-order Leslie-Gower model with Holling type II functional response and a single time delay is firstly considered. The stability interval and bifurcation points of developed model are derived via analytic extrapolation by regarding time delay as a bifurcation parameter. Besides, a delayed feedback control is successfully designed to put off the onset of Hopf bifurcation, extend the stability domain, and then the system possesses the stability in a larger parameter range. Some numerical simulations are shown in order to check the availability of the theoretical results.
[1] | J. F. Andrews, A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnol. Bioeng., 1968, 10, 707–723. doi: 10.1002/bit.260100602 |
[2] | M. A. Aziz-Alaoui and M. Daher Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-Type Ⅱ schemes, Appl. Math. Lett., 2003, 16, 1069–1075. doi: 10.1016/S0893-9659(03)90096-6 |
[3] | E. H. Abed and J. Fu, Local feedback stabilization and bifurcation control: Ⅱ. Stationary bifurcation, Syst. Control Lett., 1987, 8, 467–473. doi: 10.1016/0167-6911(87)90089-2 |
[4] | J. Cao and R. Yuan, Bifurcation analysis in a modified Lesile-Gower model with Holling type Ⅱ functional response and delay, Nonlinear Dyn., 2016, 84, 1341–1352. doi: 10.1007/s11071-015-2572-5 |
[5] | G. Chen, J.L. Moiola and H. Wang, Bifurcation control: theories, methods and applications, Int. J. Bifurcat. Chaos, 2000, 10, 511–548. doi: 10.1142/S0218127400000360 |
[6] | W. Deng, C. Li and J. Lü, Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dyn., 2007, 48, 409–416. doi: 10.1007/s11071-006-9094-0 |
[7] | Y. Fan, X. Huang, Z. Wang and Y. Li, Improved quasi-synchronization criteria for delayed fractional-order memristor-based neural networks via linear feedback control, Neurocomputing, 2018, 306, 68–79. doi: 10.1016/j.neucom.2018.03.060 |
[8] | Y. Fan, X. Huang, Z. Wang and Y. Li, Global dissipativity and quasi-synchronization of asynchronous updating fractional-order memristor-based neural networks via interval matrix method, J. Franklin Inst., 2018, 355, 5998–6025. doi: 10.1016/j.jfranklin.2018.05.058 |
[9] | Y. Fan, X. Huang, Z. Wang and Y. Li, Nonlinear dynamics and chaos in a simplified memristor-based fractional-order neural network with discontinuous memductance function, Nonlinear Dynam., 2018, 93, 611–627. doi: 10.1007/s11071-018-4213-2 |
[10] | X. Huang, Y. Fan, J. Jia, Z. Wang and Y. Li, Quasi-synchronization of fractional-order memristor-based neural networks with parameter mismatches, IET Control Theory Appl., 2017, 11, 2317–2327. doi: 10.1049/iet-cta.2017.0196 |
[11] | C. Huang, J. Cao and M. Xiao, Hybrid control on bifurcation for a delayed fractional gene regulatory network, Chaos Solitons Fract., 2016, 87, 19–29. doi: 10.1016/j.chaos.2016.02.036 |
[12] | J. Jia, X. Huang, Y. Li, J. Cao and A. Alsaedi, Global stabilization of fractional-order memristor-based neural networks with time delay, IEEE Trans. Neural Netw. Learn. Syst., 2020, 31, 997–1009. doi: 10.1109/TNNLS.2019.2915353 |
[13] | A. Korobeinikov, A Lyapunov function for Leslie-Gower predator-prey models, Appl. Math. Lett., 2001, 14, 697–699. doi: 10.1016/S0893-9659(01)80029-X |
[14] | P. H. Leslie, Some further notes on the use of matrices in population mathematics, Biometrika, 1948, 35, 213–245. doi: 10.1093/biomet/35.3-4.213 |
[15] | P. H. Leslie, A stochastic model for studying the properties of certain biological systems by numerical methods, Biometrika, 1958, 45, 16–31. doi: 10.1093/biomet/45.1-2.16 |
[16] | P. H. Leslie and J.C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 1960, 47, 219–234. doi: 10.1093/biomet/47.3-4.219 |
[17] | Y. Li and D. Xiao, Bifurcations of a predator-prey system of Holling and Leslie types, Chaos Soliton. Fract., 2007, 34, 606–620. doi: 10.1016/j.chaos.2006.03.068 |
[18] | A. F. Nindjin, et al., Analysis of a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes with time delay, Nonlinear Anal. RWA., 2006, 7, 1104–1118. doi: 10.1016/j.nonrwa.2005.10.003 |
[19] | I. Petras, Fractional-order nonlinear systems: modeling, analysis and simulation, Springer-Verlag, New York, 2011. |
[20] |
F. Padula, S. Alcantara, R. Vilanova and A. Visioli, $H_{\infty}$
control of fractional linear systems, Automatica, 2013, 49, 2276–2280. doi: 10.1016/j.automatica.2013.04.012
CrossRef $H_{\infty}$ control of fractional linear systems" target="_blank">Google Scholar |
[21] | Y. Pan, H. Yu and M. Er, Adaptive neural pd control with semiglobal asymptotic stabilization guarantee, IEEE Trans. Neural Netw. Learn Syst., 2014, 25, 2264–2274. doi: 10.1109/TNNLS.2014.2308571 |
[22] | Y. Pan, Y. Liu, B. Xu and H. Yu, Hybrid feedback feedforward: an efficient design of adaptive neural network control, Neural Networks, 2016, 76, 122–134. doi: 10.1016/j.neunet.2015.12.009 |
[23] | Y. Pan and H. Yu, Composite learning from adaptive dynamic surface control, IEEE Trans. Autom. Control, 2016, 61, 2603–2609. doi: 10.1109/TAC.2015.2495232 |
[24] | Y. Song, S. Yuan and J. Zhang, Bifurcation analysis in the delayed Leslie-Gower predator-prey system, Appl. Math. Model., 2009, 33, 4049–4061. doi: 10.1016/j.apm.2009.02.008 |
[25] | M. Shi and Z. Wang, Stability and Hopf bifurcation control of a fractional-order small world network model, Sci. China Phys. Mech., 2013, 43, 467–477. |
[26] | P. Sopasakis and H. Sarimveis, Stabilising model predictive control for discrete-time fractional-order systems, Automatica, 2017, 75, 24–31. doi: 10.1016/j.automatica.2016.09.014 |
[27] | R. Yafia, F. Adnani and H. Alaoui, Limit cycle and numerical simulations for small and large delays in a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes, Nonlinear Anal. RWA., 2008, 9, 2055–2067. doi: 10.1016/j.nonrwa.2006.12.017 |
[28] | S. Yuan and Y. Song, Stability and Hopf bifurcations in a delayed Leslie-Gower predator-prey system, J. Math. Anal. Appl., 2009, 355, 82–100. doi: 10.1016/j.jmaa.2009.01.052 |
[29] | P. Yu and G. Chen, Hopf bifurcation control using nonlinear feedback with polynomial functions, Int. J. Bifurcat. Chaos, 2004, 14, 1683–1704. doi: 10.1142/S0218127404010291 |
[30] | L. Zhang and Y. Yang, Finite time impulsive synchronization of fractional order memristive BAM neural networks, Neurocomputing, 2020, 384, 213–224. doi: 10.1016/j.neucom.2019.12.056 |
[31] | L. Zhang and Y. Yang, Optimal quasi-synchronization of fractional-order memristive neural networks with PSOA, Neural Comput. Appl., 2020, 32, 9667–9682. doi: 10.1007/s00521-019-04488-z |
[32] | A. A. Zamani, S. Tavakoli and S. Etedali, Fractional order PID control design for semi-active control of smart base-isolated structures: A multi-objective cuckoo search approach, ISA Trans., 2017, 67, 222–232. doi: 10.1016/j.isatra.2017.01.012 |
The positive equilibrium point
The positive equilibrium point
The positive equilibrium point
The positive equilibrium point
The positive equilibrium point
The positive equilibrium point
Illustration of bifurcation point
Illustration of bifurcation point
Illustration of bifurcation point
The positive equilibrium point of controlled system (5.2) is unstable with initial value (0.5, 0.5),
Controlled system (5.2) converges to the positive equilibrium point with initial value (0.5, 0.5),
The effect of bifurcation control for system (5.2) becomes better as feedback gain decreases with initial value (0.5, 0.5),
The effect of bifurcation control for system (5.2) becomes better as feedback gain decreases with initial value (0.5, 0.5),