2024 Volume 14 Issue 4
Article Contents

Luyao Zhao, Jingyong Tang. LEVENBERG-MARQUARDT METHOD WITH A GENERAL LM PARAMETER AND A NONMONOTONE TRUST REGION TECHNIQUE[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 1959-1976. doi: 10.11948/20220441
Citation: Luyao Zhao, Jingyong Tang. LEVENBERG-MARQUARDT METHOD WITH A GENERAL LM PARAMETER AND A NONMONOTONE TRUST REGION TECHNIQUE[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 1959-1976. doi: 10.11948/20220441

LEVENBERG-MARQUARDT METHOD WITH A GENERAL LM PARAMETER AND A NONMONOTONE TRUST REGION TECHNIQUE

  • Author Bio: Email: zly976557281@163.com(L. Zhao)
  • Corresponding author: Email: tangjy@xynu.edu.cn(J. Tang)
  • Fund Project: This work was supported by the Henan Province Natural Science Foundation (222300420520) and the Key Scientific Research Projects of Higher Education of Henan Province (22A110020)
  • We propose a new Levenberg-Marquardt (LM) method for solving the nonlinear equations. The new LM method takes a general LM parameter $ \lambda_k=\mu_k[(1-\theta)\|F_k\|^\delta+\theta\|J_k^TF_k\|^\delta] $ where $ \theta\in[0,1] $ and $ \delta\in(0,3) $ and adopts a nonmonotone trust region technique to ensure the global convergence. Under the local error bound condition, we prove that the new LM method has at least a superlinear convergence rate with the order $ \min\{1+\delta,4-\delta,2\} $. We also apply the new LM method to solve the nonlinear equations arising from the weighted linear complementarity problem. Numerical experiments indicate that the new LM method is efficient and promising.

    MSC: 65K05, 90C30
  • 加载中
  • [1] M. Ahookhosh and K. Amini, An efficient nonmonotone trust-region method for unconstrained optimization, Numer. Algor., 2012, 59(4), 523–540. doi: 10.1007/s11075-011-9502-5

    CrossRef Google Scholar

    [2] K. Amini, F. Rostami and G. Caristi, An efficient Levenberg-Marquardt method with a new LM parameter for systems of nonlinear equations, Optim., 2018, 67(5), 637–650. doi: 10.1080/02331934.2018.1435655

    CrossRef Google Scholar

    [3] S. Asadi, Z. Darvay and G. Lesaja, et al., A full-Newton step interior-point method for monotone weighted linear complementarity problems, J. Optim. Theory Appl., 2020, 186(3), 864–878. doi: 10.1007/s10957-020-01728-4

    CrossRef Google Scholar

    [4] R. Behling and A. Iusem, The effect of calmness on the solution set of systems of nonlinear equations, Math. Program., 2013, 137(1–2), 155–165. doi: 10.1007/s10107-011-0486-7

    CrossRef Google Scholar

    [5] J. S. Chen, The semismooth-related properties of a merit function and a descent method for the nonlinear complementarity problem, J. Global Optim., 2006, 36(4), 565–580. doi: 10.1007/s10898-006-9027-y

    CrossRef Google Scholar

    [6] X. N. Chi, Z. P. Wan and Z. J. Hao, A full-modified-Newton step $O(n)$ infeasible interior-point method for the special weighted linear complementarity problem, J. Ind. Manag. Optim., 2022, 18(4), 2579–2598. doi: 10.3934/jimo.2021082

    CrossRef Google Scholar

    [7] X. N. Chi and G. Q. Wang, A full-Newton step infeasible interior-point method for the special weighted linear complementarity problem, J. Optim. Theory Appl., 2021, 190(1), 108–129. doi: 10.1007/s10957-021-01873-4

    CrossRef Google Scholar

    [8] N. Y. Deng, Y. Xiao and F. J. Zhou, Nonmonotonic trust region algorithm, J. Optim. Theory Appl., 1993, 76(2), 259–285. doi: 10.1007/BF00939608

    CrossRef Google Scholar

    [9] J. Y. Fan, A modified Levenberg-Marquardt algorithm for singular system of nonlinear equations, J. Comput. Math., 2003, 21(5), 625–636.

    Google Scholar

    [10] J. Y. Fan and J. Y. Pan, Convergence properties of a self-adaptive Levenberg-Marquardt algorithm under local error bound condition, Comput. Optim. Appl., 2006, 34(1), 47–62. doi: 10.1007/s10589-005-3074-z

    CrossRef Google Scholar

    [11] J. Y. Fan and J. Y. Pan, A note on the Levenberg-Marquardt parameter, Appl. Math. Comput., 2009, 207(2), 351–359.

    Google Scholar

    [12] J. Y. Fan and Y. X. Yuan, On the convergence of a new Levenberg-Marquardt method, AMSS, Chinese Academy of Sciences, 2001, Report NO. 005, 1–11.

    Google Scholar

    [13] J. Y. Fan and Y. X. Yuan, On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption, Comput., 2005, 74(1), 23–39. doi: 10.1007/s00607-004-0083-1

    CrossRef Google Scholar

    [14] M. S. Gowda, Weighted LCPs and interior point systems for copositive linear transformations on Euclidean Jordan algebras, J. Global Optim., 2019, 74(2), 285–295. doi: 10.1007/s10898-019-00760-7

    CrossRef Google Scholar

    [15] C. F. Ma and L. H. Jiang, Some research on Levenberg-Marquardt method for the nonlinear equations, Appl. Math. Comput., 2007, 184(2), 1032–1040.

    Google Scholar

    [16] F. A. Potra, Weighted complementarity problems-a new paradigm for computing equilibria, SIAM J. Optim., 2012, 22(4), 1634–1654. doi: 10.1137/110837310

    CrossRef Google Scholar

    [17] F. A. Potra, Sufficient weighted complementarity problems, Comput. Optim. Appl., 2016, 64(2), 467–488. doi: 10.1007/s10589-015-9811-z

    CrossRef Google Scholar

    [18] G. W. Stewart and J. G. Sun, Matrix Perturbation Theory, Academic Press, Inc., Boston, MA, San Diego, CA, 1990.

    Google Scholar

    [19] J. Y. Tang, A variant nonmonotone smoothing algorithm with improved numerical results for large-scale LWCPs, Comput. Appl. Math., 2018, 37(3), 3927–3936. doi: 10.1007/s40314-017-0554-6

    CrossRef Google Scholar

    [20] J. Y. Tang and H. C. Zhang, A nonmonotone smoothing Newton algorithm for weighted complementarity problems, J. Optim. Theory Appl., 2021, 189(3), 679–715. doi: 10.1007/s10957-021-01839-6

    CrossRef Google Scholar

    [21] J. Y. Tang and J. C. Zhou, A modified damped Gauss-Newton method for non-monotone weighted linear complementarity problems, Optim. Methods Softw., 2022, 37(3), 1145–1164. doi: 10.1080/10556788.2021.1903007

    CrossRef Google Scholar

    [22] J. Y. Tang and J. C. Zhou, Quadratic convergence analysis of a nonmonotone Levenberg-Marquardt type method for the weighted nonlinear complementarity problem, Comput. Optim. Appl., 2021, 80(1), 213–244. doi: 10.1007/s10589-021-00300-8

    CrossRef Google Scholar

    [23] Ph. L. Toint, Non-monotone trust-region algorithm for nonlinear optimization subject to convex constraints, Math. Program., 1997, 77(1), 69–94.

    Google Scholar

    [24] H. Y. Wang and J. Y. Fan, Convergence rate of the Levenberg-Marquardt method under Hölderian local error bound, Optim. Methods Softw., 2020, 35(4), 767–786. doi: 10.1080/10556788.2019.1694927

    CrossRef Google Scholar

    [25] H. Y. Wang and J. Y. Fan, Convergence properties of inexact Levenberg-Marquardt method under Hölderian local error bound, J. Ind. Manag. Optim., 2021, 17(4), 2265–2275. doi: 10.3934/jimo.2020068

    CrossRef Google Scholar

    [26] N. Yamashita and M. Fukushima, On the rate of convergence of the Levenberg-Marquardt method, Comput. Suppl., 2001, 15, 239–249.

    Google Scholar

    [27] Y. X. Yuan, Recent advances in trust region algorithms, Math. Program., 2015, 151(1), 249–281. doi: 10.1007/s10107-015-0893-2

    CrossRef Google Scholar

    [28] M. L. Zeng and G. H. Zhou, Improved convergence results of an efficient Levenberg-Marquardt method for nonlinear equations, J. Appl. Math. Comput., 2022, 68(6), 3655–3671. doi: 10.1007/s12190-021-01599-6

    CrossRef Google Scholar

    [29] J. Zhang, A smoothing Newton algorithm for weighted linear complementarity problem, Optim. Lett., 2016, 10(3), 499–509. doi: 10.1007/s11590-015-0877-4

    CrossRef Google Scholar

    [30] L. Zheng, L. Chen and Y. F. Ma, A variant of the Levenberg-Marquardt method with adaptive parameters for systems of nonlinear equations, AIMS Math., 2022, 7(1), 1241–1256.

    Google Scholar

    [31] W. J. Zhou, On the convergence of the modified Levenberg-Marquardt method with a nonmonotone second order Armijo type line search, J. Comput. Appl. Math., 2013, 239, 152–161. doi: 10.1016/j.cam.2012.09.025

    CrossRef Google Scholar

Tables(2)

Article Metrics

Article views(954) PDF downloads(319) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint